These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
403 related articles for article (PubMed ID: 11438729)
1. Mechanical behavior in living cells consistent with the tensegrity model. Wang N; Naruse K; Stamenović D; Fredberg JJ; Mijailovich SM; Tolić-Nørrelykke IM; Polte T; Mannix R; Ingber DE Proc Natl Acad Sci U S A; 2001 Jul; 98(14):7765-70. PubMed ID: 11438729 [TBL] [Abstract][Full Text] [Related]
2. A computational tensegrity model predicts dynamic rheological behaviors in living cells. Sultan C; Stamenović D; Ingber DE Ann Biomed Eng; 2004 Apr; 32(4):520-30. PubMed ID: 15117025 [TBL] [Abstract][Full Text] [Related]
3. Tensegrity, cellular biophysics, and the mechanics of living systems. Ingber DE; Wang N; Stamenovic D Rep Prog Phys; 2014 Apr; 77(4):046603. PubMed ID: 24695087 [TBL] [Abstract][Full Text] [Related]
4. Tensegrity and mechanoregulation: from skeleton to cytoskeleton. Chen CS; Ingber DE Osteoarthritis Cartilage; 1999 Jan; 7(1):81-94. PubMed ID: 10367017 [TBL] [Abstract][Full Text] [Related]
5. Experimental tests of the cellular tensegrity hypothesis. Stamenović D; Mijailovich SM; Tolić-Nørrelykke IM; Wang N Biorheology; 2003; 40(1-3):221-5. PubMed ID: 12454408 [TBL] [Abstract][Full Text] [Related]
6. A microstructural approach to cytoskeletal mechanics based on tensegrity. Stamenović D; Fredberg JJ; Wang N; Butler JP; Ingber DE J Theor Biol; 1996 Jul; 181(2):125-36. PubMed ID: 8935591 [TBL] [Abstract][Full Text] [Related]
7. Effects of cytoskeletal prestress on cell rheological behavior. Stamenović D Acta Biomater; 2005 May; 1(3):255-62. PubMed ID: 16701804 [TBL] [Abstract][Full Text] [Related]
8. Tensegrity I. Cell structure and hierarchical systems biology. Ingber DE J Cell Sci; 2003 Apr; 116(Pt 7):1157-73. PubMed ID: 12615960 [TBL] [Abstract][Full Text] [Related]
9. Direct observations of the mechanical behaviors of the cytoskeleton in living fibroblasts. Heidemann SR; Kaech S; Buxbaum RE; Matus A J Cell Biol; 1999 Apr; 145(1):109-22. PubMed ID: 10189372 [TBL] [Abstract][Full Text] [Related]
10. Cell prestress. II. Contribution of microtubules. Stamenović D; Mijailovich SM; Tolić-Nørrelykke IM; Chen J; Wang N Am J Physiol Cell Physiol; 2002 Mar; 282(3):C617-24. PubMed ID: 11832347 [TBL] [Abstract][Full Text] [Related]
11. Tensegrity architecture explains linear stiffening and predicts softening of living cells. Volokh KY; Vilnay O; Belsky M J Biomech; 2000 Dec; 33(12):1543-9. PubMed ID: 11006377 [TBL] [Abstract][Full Text] [Related]
12. Cytoskeletal architecture and mechanical behavior of living cells. Volokh KY Biorheology; 2003; 40(1-3):213-20. PubMed ID: 12454407 [TBL] [Abstract][Full Text] [Related]
13. Complexity of the tensegrity structure for dynamic energy and force distribution of cytoskeleton during cell spreading. Chen TJ; Wu CC; Tang MJ; Huang JS; Su FC PLoS One; 2010 Dec; 5(12):e14392. PubMed ID: 21200440 [TBL] [Abstract][Full Text] [Related]
14. The role of prestress and architecture of the cytoskeleton and deformability of cytoskeletal filaments in mechanics of adherent cells: a quantitative analysis. Stamenović D; Coughlin MF J Theor Biol; 1999 Nov; 201(1):63-74. PubMed ID: 10534436 [TBL] [Abstract][Full Text] [Related]
15. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Kumar S; Maxwell IZ; Heisterkamp A; Polte TR; Lele TP; Salanga M; Mazur E; Ingber DE Biophys J; 2006 May; 90(10):3762-73. PubMed ID: 16500961 [TBL] [Abstract][Full Text] [Related]