These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 11438757)

  • 1. Comparing the effect on protein stability of methionine oxidation versus mutagenesis: steps toward engineering oxidative resistance in proteins.
    Kim YH; Berry AH; Spencer DS; Stites WE
    Protein Eng; 2001 May; 14(5):343-7. PubMed ID: 11438757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of buried cysteines is slow and an insignificant factor in the structural destabilization of staphylococcal nuclease caused by H2O2 exposure.
    Kim YH; Stites WE
    Amino Acids; 2004 Oct; 27(2):175-81. PubMed ID: 15316877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing the thermostability of staphylococcal nuclease: implications for the origin of protein thermostability.
    Chen J; Lu Z; Sakon J; Stites WE
    J Mol Biol; 2000 Oct; 303(2):125-30. PubMed ID: 11023780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetics of side chain packing in staphylococcal nuclease assessed by exchange of valines, isoleucines, and leucines.
    Holder JB; Bennett AF; Chen J; Spencer DS; Byrne MP; Stites WE
    Biochemistry; 2001 Nov; 40(46):13998-4003. PubMed ID: 11705391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions of the large hydrophobic amino acids to the stability of staphylococcal nuclease.
    Shortle D; Stites WE; Meeker AK
    Biochemistry; 1990 Sep; 29(35):8033-41. PubMed ID: 2261461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of the ionizable amino acids to the stability of staphylococcal nuclease.
    Meeker AK; Garcia-Moreno B; Shortle D
    Biochemistry; 1996 May; 35(20):6443-9. PubMed ID: 8639591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of Glu75 of staphylococcal nuclease on enzyme activity, protein stability and protein unfolding.
    Chen HM; Dimagno TJ; Wang W; Leung E; Lee CH; Chan SI
    Eur J Biochem; 1999 May; 261(3):599-609. PubMed ID: 10215875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetic contribution of side chain hydrogen bonding to the stability of staphylococcal nuclease.
    Byrne MP; Manuel RL; Lowe LG; Stites WE
    Biochemistry; 1995 Oct; 34(42):13949-60. PubMed ID: 7577991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered disulfide bonds in staphylococcal nuclease: effects on the stability and conformation of the folded protein.
    Hinck AP; Truckses DM; Markley JL
    Biochemistry; 1996 Aug; 35(32):10328-38. PubMed ID: 8756688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing oxidative resistance of Agrobacterium radiobacter N-carbamoyl D-amino acid amidohydrolase by engineering solvent-accessible methionine residues.
    Roger Chien HC; Hsu CL; Hu HY; Wang WC; Hsu WH
    Biochem Biophys Res Commun; 2002 Sep; 297(2):282-7. PubMed ID: 12237115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cold denaturation and 2H2O stabilization of a staphylococcal nuclease mutant.
    Antonino LC; Kautz RA; Nakano T; Fox RO; Fink AL
    Proc Natl Acad Sci U S A; 1991 Sep; 88(17):7715-8. PubMed ID: 1652762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and physical characterization of random insertions in Staphylococcal nuclease.
    Nguyen DM; Schleif RF
    J Mol Biol; 1998 Oct; 282(4):751-9. PubMed ID: 9743624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics of side chain packing in staphylococcal nuclease assessed by systematic double mutant cycles.
    Chen J; Stites WE
    Biochemistry; 2001 Nov; 40(46):14004-11. PubMed ID: 11705392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-pressure denaturation of staphylococcal nuclease proline-to-glycine substitution mutants.
    Vidugiris GJ; Truckses DM; Markley JL; Royer CA
    Biochemistry; 1996 Mar; 35(12):3857-64. PubMed ID: 8620010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of the polar, uncharged amino acids to the stability of staphylococcal nuclease: evidence for mutational effects on the free energy of the denatured state.
    Green SM; Meeker AK; Shortle D
    Biochemistry; 1992 Jun; 31(25):5717-28. PubMed ID: 1610820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Higher-order packing interactions in triple and quadruple mutants of staphylococcal nuclease.
    Chen J; Stites WE
    Biochemistry; 2001 Nov; 40(46):14012-9. PubMed ID: 11705393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of tryptophan in staphylococcal nuclease stability.
    Hu HY; Wu MC; Fang HJ; Forrest MD; Hu CK; Tsong TY; Chen HM
    Biophys Chem; 2010 Oct; 151(3):170-7. PubMed ID: 20688426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pH dependence of staphylococcal nuclease stability is incompatible with a three-state denaturation model.
    Spencer D; Bertrand GM; Stites WE
    Biophys Chem; 2013; 180-181():86-94. PubMed ID: 23892194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of amino acid replacements of glycine 20 on conformational stability and catalysis of staphylococcal nuclease.
    Feng Y; Huang S; Zhang W; Zeng Z; Zou X; Zhong L; Peng J; Jing G
    Biochimie; 2004 Dec; 86(12):893-901. PubMed ID: 15667939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free-energy simulations of the oxidation of c-terminal methionines in calmodulin.
    Jas GS; Kuczera K
    Proteins; 2002 Aug; 48(2):257-68. PubMed ID: 12112694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.