These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 11438942)
1. Neurotrophins, but not depolarization, regulate substance P expression in the developing optic tectum. Tu S; Debski EA J Neurobiol; 2001 Aug; 48(2):131-49. PubMed ID: 11438942 [TBL] [Abstract][Full Text] [Related]
2. Activity-dependent regulation of substance P expression and topographic map maintenance by a cholinergic pathway. Tu S; Butt CM; Pauly JR; Debski EA J Neurosci; 2000 Jul; 20(14):5346-57. PubMed ID: 10884319 [TBL] [Abstract][Full Text] [Related]
3. Nicotine exposure refines visual map topography through an NMDA receptor-mediated pathway. Yan X; Zhao B; Butt CM; Debski EA Eur J Neurosci; 2006 Dec; 24(11):3026-42. PubMed ID: 17156364 [TBL] [Abstract][Full Text] [Related]
4. Pharmacology, distribution and development of muscarinic acetylcholine receptor subtypes in the optic tectum of Rana pipiens. Butt CM; Pauly JR; Wilkins LH; Dwoskin LP; Debski EA Neuroscience; 2001; 104(1):161-79. PubMed ID: 11311540 [TBL] [Abstract][Full Text] [Related]
5. Development and regulation of substance P expression in neurons of the tadpole optic tectum. Tu S; Debski EA Vis Neurosci; 1999; 16(4):695-705. PubMed ID: 10431918 [TBL] [Abstract][Full Text] [Related]
6. Optic nerve-dependent changes in adult frog tectal cell phenotypes. Liu Q; Debski EA J Neurobiol; 1996 Apr; 29(4):517-34. PubMed ID: 8656215 [TBL] [Abstract][Full Text] [Related]
7. NMDA antagonists in the superior colliculus prevent developmental plasticity but not visual transmission or map compression. Huang L; Pallas SL J Neurophysiol; 2001 Sep; 86(3):1179-94. PubMed ID: 11535668 [TBL] [Abstract][Full Text] [Related]
8. Origins of serotonin-like immunoreactivity in the optic tectum of Rana pipiens. Liu Q; Debski EA J Comp Neurol; 1995 Feb; 352(2):280-96. PubMed ID: 7721995 [TBL] [Abstract][Full Text] [Related]
9. Differential effects of cortical neurotrophic factors on development of lateral geniculate nucleus and superior colliculus neurons: anterograde and retrograde actions. Wahle P; Di Cristo G; Schwerdtfeger G; Engelhardt M; Berardi N; Maffei L Development; 2003 Feb; 130(3):611-22. PubMed ID: 12490566 [TBL] [Abstract][Full Text] [Related]
10. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening. Schmidt JT; Fleming MR; Leu B J Neurobiol; 2004 Feb; 58(3):328-40. PubMed ID: 14750146 [TBL] [Abstract][Full Text] [Related]
11. Anterograde transport and trophic actions of BDNF and NT-4/5 in the developing rat visual system. Spalding KL; Tan MM; Hendry IA; Harvey AR Mol Cell Neurosci; 2002 Apr; 19(4):485-500. PubMed ID: 11988017 [TBL] [Abstract][Full Text] [Related]
12. Physiological effects of chronic and acute application of N-methyl-D-aspartate and 5-amino-phosphonovaleric acid to the optic tectum of Rana pipiens frogs. Udin SB; Scherer WJ; Constantine-Paton M Neuroscience; 1992 Aug; 49(3):739-47. PubMed ID: 1354340 [TBL] [Abstract][Full Text] [Related]
13. Region-specific contribution of ephrin-B and Wnt signaling to receptive field plasticity in developing optic tectum. Lim BK; Cho SJ; Sumbre G; Poo MM Neuron; 2010 Mar; 65(6):899-911. PubMed ID: 20346764 [TBL] [Abstract][Full Text] [Related]
14. Arachidonic acid as a retrograde signal controlling growth and dynamics of retinotectal arbors. Leu BH; Schmidt JT Dev Neurobiol; 2008 Jan; 68(1):18-30. PubMed ID: 17918241 [TBL] [Abstract][Full Text] [Related]
15. Differential effects of ocular BDNF-injections onto the development of tectal cells characterized by calcium-binding proteins in pigeons. Manns M; Güntürkün O Brain Res Bull; 2005 Sep; 66(4-6):475-8. PubMed ID: 16144635 [TBL] [Abstract][Full Text] [Related]
16. Changes in brain-derived neurotrophic factor and trkB receptor in the adult Rana pipiens retina and optic tectum after optic nerve injury. Duprey-Díaz MV; Soto I; Blagburn JM; Blanco RE J Comp Neurol; 2002 Dec; 454(4):456-69. PubMed ID: 12455009 [TBL] [Abstract][Full Text] [Related]
17. Neurotrophin-3 and TrkC in the frog visual system: changes after axotomy. Duprey-Díaz MV; Blagburn JM; Blanco RE Brain Res; 2003 Aug; 982(1):54-63. PubMed ID: 12915240 [TBL] [Abstract][Full Text] [Related]
18. The development of non-retinal afferent projections to the frog optic tectum and the substance P immunoreactivity of tectal connections. Debski EA; Constantine-Paton M Brain Res Dev Brain Res; 1993 Mar; 72(1):21-39. PubMed ID: 7680968 [TBL] [Abstract][Full Text] [Related]
19. Local and target-derived brain-derived neurotrophic factor exert opposing effects on the dendritic arborization of retinal ganglion cells in vivo. Lom B; Cogen J; Sanchez AL; Vu T; Cohen-Cory S J Neurosci; 2002 Sep; 22(17):7639-49. PubMed ID: 12196587 [TBL] [Abstract][Full Text] [Related]
20. Transient up-regulation of the rostrocaudal gradient of ephrin A2 in the tectum coincides with reestablishment of orderly projections during optic nerve regeneration in goldfish. Rodger J; Bartlett CA; Beazley LD; Dunlop SA Exp Neurol; 2000 Nov; 166(1):196-200. PubMed ID: 11031096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]