BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 11438971)

  • 1. Quantification of D/L-aspartic acids in Aplysia californica central nervous system by beta-cyclodextrin modified micellar electrokinetic chromatography.
    Zhao S; Liu YM
    Biomed Chromatogr; 2001 Jun; 15(4):274-9. PubMed ID: 11438971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of amino acid enantiomers in single cells by capillary electrophoresis.
    Zhao S; LifuYM
    Cell Mol Biol (Noisy-le-grand); 2001 Nov; 47(7):1217-22. PubMed ID: 11838970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capillary electrophoretic separation of glutamate enantiomers in neural samples.
    Quan Z; Liu YM
    Electrophoresis; 2003 Mar; 24(6):1092-6. PubMed ID: 12658700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo simultaneous monitoring of gamma-aminobutyric acid, glutamate, and L-aspartate using brain microdialysis and capillary electrophoresis with laser-induced fluorescence detection: Analytical developments and in vitro/in vivo validations.
    Sauvinet V; Parrot S; Benturquia N; Bravo-Moratón E; Renaud B; Denoroy L
    Electrophoresis; 2003 Sep; 24(18):3187-96. PubMed ID: 14518043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assay of trace D-amino acids in neural tissue samples by capillary liquid chromatography/tandem mass spectrometry.
    Song Y; Feng Y; LeBlanc MH; Zhao S; Liu YM
    Anal Chem; 2006 Dec; 78(23):8121-8. PubMed ID: 17134148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of D-amino acids in the central nervous system of Aplysia californica by liquid chromatography/tandem mass spectrometry.
    Song Y; Liang F; Liu YM
    Rapid Commun Mass Spectrom; 2007; 21(1):73-7. PubMed ID: 17133650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stacking and separation of aspartic acid enantiomers under discontinuous system by capillary electrophoresis with light-emitting diode-induced fluorescence detection.
    Lin KC; Hsieh MM; Chang CW; Lin EP; Wu TH
    Talanta; 2010 Oct; 82(5):1912-8. PubMed ID: 20875595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophoretic separation of tryptophan enantiomers in biological samples.
    Zhao S; Liu YM
    Electrophoresis; 2001 Aug; 22(13):2769-74. PubMed ID: 11545406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of doxorubicin and doxorubicinol by cyclodextrin-modified micellar electrokinetic capillary chromatography.
    Eder AR; Chen JS; Arriaga EA
    Electrophoresis; 2006 Aug; 27(16):3263-70. PubMed ID: 16915573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral separation of polychlorinated biphenyls using a combination of hydroxypropyl-gamma-cyclodextrin and a polymeric chiral surfactant.
    Edwards SH; Shamsi SA
    Electrophoresis; 2002 May; 23(9):1320-7. PubMed ID: 12007133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of stepwise discriminant analysis to classify commercial orange juices using chiral micellar electrokinetic chromatography-laser induced fluorescence data of amino acids.
    Simó C; Martín-Alvarez PJ; Barbas C; Cifuentes A
    Electrophoresis; 2004 Aug; 25(16):2885-91. PubMed ID: 15352023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of dipeptides with two chiral centers using 2-hydroxypropyl-beta-CD-modified MEKC.
    Chen Y; Zhang J; Zhang L; Chen G
    Electrophoresis; 2010 May; 31(9):1493-7. PubMed ID: 20376812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral separation of amino acid esters by micellar electrokinetic chromatography.
    Salami M; Otto HH; Jira T
    Electrophoresis; 2001 Sep; 22(15):3291-6. PubMed ID: 11589293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantiomeric resolution of selenoamino acid derivatives by micellar electrokinetic chromatography (MEKC) with sodium dodecyl sulphate and a mixture of beta-cyclodextrin and taurodeoxycholic acid as chiral selectors.
    Pérez Méndez S; Blanco González E; Sanz-Medel A
    Biomed Chromatogr; 2000 Feb; 14(1):8-9. PubMed ID: 10664549
    [No Abstract]   [Full Text] [Related]  

  • 15. Determination of related impurities of bile acids in bulk drugs by cyclodextrin-modified micellar electrokinetic chromatography.
    Lucangioli SE; Rodríguez VG; Fernández Otero GC; Carducci CN
    J Capillary Electrophor; 1998; 5(3-4):139-42. PubMed ID: 10797879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct enantioseparation of catechin and epicatechin in tea drinks by 6-O-alpha-D-glucosyl-beta-cyclodextrin-modified micellar electrokinetic chromatography.
    Kodama S; Yamamoto A; Matsunaga A; Yanai H
    Electrophoresis; 2004 Aug; 25(16):2892-8. PubMed ID: 15352024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of aminophospholipid molecular species by methyl-beta-cyclodextrin modified micellar electrokinetic capillary chromatography with laser-induced fluorescence detection.
    Zhang L; Hu S; Cook L; Dovichi NJ
    Electrophoresis; 2002 Sep; 23(17):3071-7. PubMed ID: 12207317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of aspartic acid enantiomers in bio-samples by capillary electrophoresis.
    Tsunoda M; Kato M; Fukushima T; Santa T; Homma H; Yanai H; Soga T; Imai K
    Biomed Chromatogr; 1999 Aug; 13(5):335-9. PubMed ID: 10425023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of chiral amino acids in conventional and transgenic maize.
    Herrero M; Ibáñez E; Martín-Alvarez PJ; Cifuentes A
    Anal Chem; 2007 Jul; 79(13):5071-7. PubMed ID: 17523597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the chiral and achiral related substances of methotrexate by cyclodextrin-modified micellar electrokinetic chromatography.
    Gotti R; El-Hady DA; Andrisano V; Bertucci C; El-Maali NA; Cavrini V
    Electrophoresis; 2004 Aug; 25(16):2830-7. PubMed ID: 15352016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.