These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 11438971)
1. Quantification of D/L-aspartic acids in Aplysia californica central nervous system by beta-cyclodextrin modified micellar electrokinetic chromatography. Zhao S; Liu YM Biomed Chromatogr; 2001 Jun; 15(4):274-9. PubMed ID: 11438971 [TBL] [Abstract][Full Text] [Related]
2. Quantification of amino acid enantiomers in single cells by capillary electrophoresis. Zhao S; LifuYM Cell Mol Biol (Noisy-le-grand); 2001 Nov; 47(7):1217-22. PubMed ID: 11838970 [TBL] [Abstract][Full Text] [Related]
3. Capillary electrophoretic separation of glutamate enantiomers in neural samples. Quan Z; Liu YM Electrophoresis; 2003 Mar; 24(6):1092-6. PubMed ID: 12658700 [TBL] [Abstract][Full Text] [Related]
4. In vivo simultaneous monitoring of gamma-aminobutyric acid, glutamate, and L-aspartate using brain microdialysis and capillary electrophoresis with laser-induced fluorescence detection: Analytical developments and in vitro/in vivo validations. Sauvinet V; Parrot S; Benturquia N; Bravo-Moratón E; Renaud B; Denoroy L Electrophoresis; 2003 Sep; 24(18):3187-96. PubMed ID: 14518043 [TBL] [Abstract][Full Text] [Related]
5. Assay of trace D-amino acids in neural tissue samples by capillary liquid chromatography/tandem mass spectrometry. Song Y; Feng Y; LeBlanc MH; Zhao S; Liu YM Anal Chem; 2006 Dec; 78(23):8121-8. PubMed ID: 17134148 [TBL] [Abstract][Full Text] [Related]
6. Quantification of D-amino acids in the central nervous system of Aplysia californica by liquid chromatography/tandem mass spectrometry. Song Y; Liang F; Liu YM Rapid Commun Mass Spectrom; 2007; 21(1):73-7. PubMed ID: 17133650 [TBL] [Abstract][Full Text] [Related]
7. Stacking and separation of aspartic acid enantiomers under discontinuous system by capillary electrophoresis with light-emitting diode-induced fluorescence detection. Lin KC; Hsieh MM; Chang CW; Lin EP; Wu TH Talanta; 2010 Oct; 82(5):1912-8. PubMed ID: 20875595 [TBL] [Abstract][Full Text] [Related]
8. Electrophoretic separation of tryptophan enantiomers in biological samples. Zhao S; Liu YM Electrophoresis; 2001 Aug; 22(13):2769-74. PubMed ID: 11545406 [TBL] [Abstract][Full Text] [Related]
9. Separation of doxorubicin and doxorubicinol by cyclodextrin-modified micellar electrokinetic capillary chromatography. Eder AR; Chen JS; Arriaga EA Electrophoresis; 2006 Aug; 27(16):3263-70. PubMed ID: 16915573 [TBL] [Abstract][Full Text] [Related]
10. Chiral separation of polychlorinated biphenyls using a combination of hydroxypropyl-gamma-cyclodextrin and a polymeric chiral surfactant. Edwards SH; Shamsi SA Electrophoresis; 2002 May; 23(9):1320-7. PubMed ID: 12007133 [TBL] [Abstract][Full Text] [Related]
11. Application of stepwise discriminant analysis to classify commercial orange juices using chiral micellar electrokinetic chromatography-laser induced fluorescence data of amino acids. Simó C; Martín-Alvarez PJ; Barbas C; Cifuentes A Electrophoresis; 2004 Aug; 25(16):2885-91. PubMed ID: 15352023 [TBL] [Abstract][Full Text] [Related]
12. Separation of dipeptides with two chiral centers using 2-hydroxypropyl-beta-CD-modified MEKC. Chen Y; Zhang J; Zhang L; Chen G Electrophoresis; 2010 May; 31(9):1493-7. PubMed ID: 20376812 [TBL] [Abstract][Full Text] [Related]
13. Chiral separation of amino acid esters by micellar electrokinetic chromatography. Salami M; Otto HH; Jira T Electrophoresis; 2001 Sep; 22(15):3291-6. PubMed ID: 11589293 [TBL] [Abstract][Full Text] [Related]
14. Enantiomeric resolution of selenoamino acid derivatives by micellar electrokinetic chromatography (MEKC) with sodium dodecyl sulphate and a mixture of beta-cyclodextrin and taurodeoxycholic acid as chiral selectors. Pérez Méndez S; Blanco González E; Sanz-Medel A Biomed Chromatogr; 2000 Feb; 14(1):8-9. PubMed ID: 10664549 [No Abstract] [Full Text] [Related]
15. Determination of related impurities of bile acids in bulk drugs by cyclodextrin-modified micellar electrokinetic chromatography. Lucangioli SE; Rodríguez VG; Fernández Otero GC; Carducci CN J Capillary Electrophor; 1998; 5(3-4):139-42. PubMed ID: 10797879 [TBL] [Abstract][Full Text] [Related]
16. Direct enantioseparation of catechin and epicatechin in tea drinks by 6-O-alpha-D-glucosyl-beta-cyclodextrin-modified micellar electrokinetic chromatography. Kodama S; Yamamoto A; Matsunaga A; Yanai H Electrophoresis; 2004 Aug; 25(16):2892-8. PubMed ID: 15352024 [TBL] [Abstract][Full Text] [Related]
17. Analysis of aminophospholipid molecular species by methyl-beta-cyclodextrin modified micellar electrokinetic capillary chromatography with laser-induced fluorescence detection. Zhang L; Hu S; Cook L; Dovichi NJ Electrophoresis; 2002 Sep; 23(17):3071-7. PubMed ID: 12207317 [TBL] [Abstract][Full Text] [Related]
18. Determination of aspartic acid enantiomers in bio-samples by capillary electrophoresis. Tsunoda M; Kato M; Fukushima T; Santa T; Homma H; Yanai H; Soga T; Imai K Biomed Chromatogr; 1999 Aug; 13(5):335-9. PubMed ID: 10425023 [TBL] [Abstract][Full Text] [Related]
19. Analysis of chiral amino acids in conventional and transgenic maize. Herrero M; Ibáñez E; Martín-Alvarez PJ; Cifuentes A Anal Chem; 2007 Jul; 79(13):5071-7. PubMed ID: 17523597 [TBL] [Abstract][Full Text] [Related]
20. Determination of the chiral and achiral related substances of methotrexate by cyclodextrin-modified micellar electrokinetic chromatography. Gotti R; El-Hady DA; Andrisano V; Bertucci C; El-Maali NA; Cavrini V Electrophoresis; 2004 Aug; 25(16):2830-7. PubMed ID: 15352016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]