BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11439052)

  • 1. Kinetics of histidine deligation from the heme in GuHCl-unfolded Fe(III) cytochrome C studied by a laser-induced pH-jump technique.
    Abbruzzetti S; Viappiani C; Small JR; Libertini LJ; Small EW
    J Am Chem Soc; 2001 Jul; 123(27):6649-53. PubMed ID: 11439052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of histidine dissociation from the heme Fe(III) in N-fragment (residues 1-56) of cytochrome c.
    Abbruzzetti S; Viappiani C; Sinibaldi F; Santucci R
    Protein J; 2004 Nov; 23(8):519-27. PubMed ID: 15648974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the predominant non-native histidine ligand in unfolded cytochrome c.
    Colón W; Wakem LP; Sherman F; Roder H
    Biochemistry; 1997 Oct; 36(41):12535-41. PubMed ID: 9376358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic mechanism of cytochrome c folding: involvement of the heme and its ligands.
    Elöve GA; Bhuyan AK; Roder H
    Biochemistry; 1994 Jun; 33(22):6925-35. PubMed ID: 8204626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-native heme-histidine ligation promotes microsecond time scale secondary structure formation in reduced horse heart cytochrome c.
    Chen E; Abel CJ; Goldbeck RA; Kliger DS
    Biochemistry; 2007 Oct; 46(43):12463-72. PubMed ID: 17914866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a partially unfolded structure of cytochrome c induced by sodium dodecyl sulphate and the kinetics of its refolding.
    Das TK; Mazumdar S; Mitra S
    Eur J Biochem; 1998 Jun; 254(3):662-70. PubMed ID: 9688280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of ligand substitution in ferrocytochrome c folding.
    Telford JR; Tezcan FA; Gray HB; Winkler JR
    Biochemistry; 1999 Feb; 38(6):1944-9. PubMed ID: 10026276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic mechanism of folding and unfolding of Rhodobacter capsulatus cytochrome c2.
    Sauder JM; MacKenzie NE; Roder H
    Biochemistry; 1996 Dec; 35(51):16852-62. PubMed ID: 8988024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled kinetic traps in cytochrome c folding: His-heme misligation and proline isomerization.
    Pierce MM; Nall BT
    J Mol Biol; 2000 May; 298(5):955-69. PubMed ID: 10801361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic barriers to the folding of horse cytochrome C in the reduced state.
    Bhuyan AK; Kumar R
    Biochemistry; 2002 Oct; 41(42):12821-34. PubMed ID: 12379125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid intrachain binding of histidine-26 and histidine-33 to heme in unfolded ferrocytochrome C.
    Hagen SJ; Latypov RF; Dolgikh DA; Roder H
    Biochemistry; 2002 Jan; 41(4):1372-80. PubMed ID: 11802740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome c folding traps are not due solely to histidine-heme ligation: direct demonstration of a role for N-terminal amino group-heme ligation.
    Hammack B; Godbole S; Bowler BE
    J Mol Biol; 1998 Feb; 275(5):719-24. PubMed ID: 9480763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH dependence of formation of a partially unfolded state of a Lys 73 --> His variant of iso-1-cytochrome c: implications for the alkaline conformational transition of cytochrome c.
    Nelson CJ; Bowler BE
    Biochemistry; 2000 Nov; 39(44):13584-94. PubMed ID: 11063596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The heme-containing N-fragment (residues 1-56) of cytochrome c is a bis-histidine functional system.
    Santucci R; Fiorucci L; Sinibaldi F; Polizio F; Desideri A; Ascoli F
    Arch Biochem Biophys; 2000 Jul; 379(2):331-6. PubMed ID: 10898952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophobic effect of trityrosine on heme ligand exchange during folding of cytochrome c.
    Hirota S; Suzuki M; Watanabe Y
    Biochem Biophys Res Commun; 2004 Feb; 314(2):452-8. PubMed ID: 14733927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytochrome c' folding triggered by electron transfer: fast and slow formation of four-helix bundles.
    Lee JC; Gray HB; Winkler JR
    Proc Natl Acad Sci U S A; 2001 Jul; 98(14):7760-4. PubMed ID: 11438728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The heme iron coordination of unfolded ferric and ferrous cytochrome c in neutral and acidic urea solutions. Spectroscopic and electrochemical studies.
    Fedurco M; Augustynski J; Indiani C; Smulevich G; Antalík M; Bánó M; Sedlák E; Glascock MC; Dawson JH
    Biochim Biophys Acta; 2004 Dec; 1703(1):31-41. PubMed ID: 15588700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast events in protein folding initiated by nanosecond laser photolysis.
    Jones CM; Henry ER; Hu Y; Chan CK; Luck SD; Bhuyan A; Roder H; Hofrichter J; Eaton WA
    Proc Natl Acad Sci U S A; 1993 Dec; 90(24):11860-4. PubMed ID: 8265638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.