These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 11439118)
1. Analysis of the SINE S1 Pol III promoter from Brassica; impact of methylation and influence of external sequences. Arnaud P; Yukawa Y; Lavie L; Pélissier T; Sugiura M; Deragon JM Plant J; 2001 May; 26(3):295-305. PubMed ID: 11439118 [TBL] [Abstract][Full Text] [Related]
2. Novel upstream and intragenic control elements for the RNA polymerase III-dependent transcription of human 7SL RNA genes. Englert M; Felis M; Junker V; Beier H Biochimie; 2004 Dec; 86(12):867-74. PubMed ID: 15667936 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and processing of tRNA-related SINE transcripts in Arabidopsis thaliana. Pélissier T; Bousquet-Antonelli C; Lavie L; Deragon JM Nucleic Acids Res; 2004; 32(13):3957-66. PubMed ID: 15282328 [TBL] [Abstract][Full Text] [Related]
4. Target sites for SINE integration in Brassica genomes display nuclear matrix binding activity. Tikhonov AP; Lavie L; Tatout C; Bennetzen JL; Avramova Z; Deragon JM Chromosome Res; 2001; 9(4):325-37. PubMed ID: 11419796 [TBL] [Abstract][Full Text] [Related]
5. Polyadenylation of RNA transcribed from mammalian SINEs by RNA polymerase III: Complex requirements for nucleotide sequences. Borodulina OR; Golubchikova JS; Ustyantsev IG; Kramerov DA Biochim Biophys Acta; 2016 Feb; 1859(2):355-65. PubMed ID: 26700565 [TBL] [Abstract][Full Text] [Related]
6. SINE retroposons can be used in vivo as nucleation centers for de novo methylation. Arnaud P; Goubely C; Pélissier T; Deragon JM Mol Cell Biol; 2000 May; 20(10):3434-41. PubMed ID: 10779333 [TBL] [Abstract][Full Text] [Related]
7. Plant 7SL RNA genes belong to type 4 of RNA polymerase III- dependent genes that are composed of mixed promoters. Yukawa Y; Felis M; Englert M; Stojanov M; Matousek J; Beier H; Sugiura M Plant J; 2005 Jul; 43(1):97-106. PubMed ID: 15960619 [TBL] [Abstract][Full Text] [Related]
8. S1 SINE retroposons are methylated at symmetrical and non-symmetrical positions in Brassica napus: identification of a preferred target site for asymmetrical methylation. Goubely C; Arnaud P; Tatout C; Heslop-Harrison JS; Deragon JM Plant Mol Biol; 1999 Jan; 39(2):243-55. PubMed ID: 10080692 [TBL] [Abstract][Full Text] [Related]
9. Upstream flanking sequences and transcription of SINEs. Roy AM; West NC; Rao A; Adhikari P; Alemán C; Barnes AP; Deininger PL J Mol Biol; 2000 Sep; 302(1):17-25. PubMed ID: 10964558 [TBL] [Abstract][Full Text] [Related]
10. Promoter strength and structure dictate module composition in RNA polymerase III transcriptional activator elements. Myslinski E; Schuster C; Krol A; Carbon P J Mol Biol; 1993 Nov; 234(2):311-8. PubMed ID: 7693950 [TBL] [Abstract][Full Text] [Related]
11. TATA-Like Boxes in RNA Polymerase III Promoters: Requirements for Nucleotide Sequences. Tatosyan KA; Stasenko DV; Koval AP; Gogolevskaya IK; Kramerov DA Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32466110 [TBL] [Abstract][Full Text] [Related]
12. Possible presence and role of the promoter sequence for eukaryotic RNA polymerase III in bacteria. Matsutani S Genetica; 2007 Oct; 131(2):127-34. PubMed ID: 17151957 [TBL] [Abstract][Full Text] [Related]
13. Transposable B2 SINE elements can provide mobile RNA polymerase II promoters. Ferrigno O; Virolle T; Djabari Z; Ortonne JP; White RJ; Aberdam D Nat Genet; 2001 May; 28(1):77-81. PubMed ID: 11326281 [TBL] [Abstract][Full Text] [Related]
14. Identification of nucleotide sequences and some proteins involved in polyadenylation of RNA transcribed by Pol III from SINEs. Ustyantsev IG; Borodulina OR; Kramerov DA RNA Biol; 2021 Oct; 18(10):1475-1488. PubMed ID: 33258402 [TBL] [Abstract][Full Text] [Related]
15. A transcriptional analysis of the S1Bn (Brassica napus) family of SINE retroposons. Deragon JM; Gilbert N; Rouquet L; Lenoir A; Arnaud P; Picard G Plant Mol Biol; 1996 Dec; 32(5):869-78. PubMed ID: 8980538 [TBL] [Abstract][Full Text] [Related]
16. Widespread use of TATA elements in the core promoters for RNA polymerases III, II, and I in fission yeast. Hamada M; Huang Y; Lowe TM; Maraia RJ Mol Cell Biol; 2001 Oct; 21(20):6870-81. PubMed ID: 11564871 [TBL] [Abstract][Full Text] [Related]
17. Comparative evolution history of SINEs in Arabidopsis thaliana and Brassica oleracea: evidence for a high rate of SINE loss. Lenoir A; Pélissier T; Bousquet-Antonelli C; Deragon JM Cytogenet Genome Res; 2005; 110(1-4):441-7. PubMed ID: 16093696 [TBL] [Abstract][Full Text] [Related]
18. The different positioning of the proximal sequence element in the Xenopus RNA polymerase II and III snRNA promoters is a key determinant which confers RNA polymerase III specificity. Lescure A; Carbon P; Krol A Nucleic Acids Res; 1991 Feb; 19(3):435-41. PubMed ID: 2011518 [TBL] [Abstract][Full Text] [Related]
19. Enhancer SINEs Link Pol III to Pol II Transcription in Neurons. Policarpi C; Crepaldi L; Brookes E; Nitarska J; French SM; Coatti A; Riccio A Cell Rep; 2017 Dec; 21(10):2879-2894. PubMed ID: 29212033 [TBL] [Abstract][Full Text] [Related]
20. Characterization of short interspersed elements (SINEs) in a red alga, Porphyra yezoensis. Zhang W; Lin X; Peddigari S; Takechi K; Takano H; Takio S Biosci Biotechnol Biochem; 2007 Feb; 71(2):618-22. PubMed ID: 17284821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]