These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11439386)

  • 1. Passive stiffness is increased in soleus muscle of desmin knockout mouse.
    Anderson J; Li Z; Goubel F
    Muscle Nerve; 2001 Aug; 24(8):1090-2. PubMed ID: 11439386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Models of skeletal muscle to explain the increase in passive stiffness in desmin knockout muscle.
    Anderson J; Li Z; Goubel F
    J Biomech; 2002 Oct; 35(10):1315-24. PubMed ID: 12231277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive stiffness changes in soleus muscles from desmin knockout mice are not due to titin modifications.
    Anderson J; Joumaa V; Stevens L; Neagoe C; Li Z; Mounier Y; Linke WA; Goubel F
    Pflugers Arch; 2002 Sep; 444(6):771-6. PubMed ID: 12355177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle.
    Li Z; Mericskay M; Agbulut O; Butler-Browne G; Carlsson L; Thornell LE; Babinet C; Paulin D
    J Cell Biol; 1997 Oct; 139(1):129-44. PubMed ID: 9314534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aging affects passive stiffness and spindle function of the rat soleus muscle.
    Rosant C; Nagel MD; Pérot C
    Exp Gerontol; 2007 Apr; 42(4):301-8. PubMed ID: 17118602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lower active force generation and improved fatigue resistance in skeletal muscle from desmin deficient mice.
    Balogh J; Li Z; Paulin D; Arner A
    J Muscle Res Cell Motil; 2003; 24(7):453-9. PubMed ID: 14677648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical predictions of the effects of force transmission by desmin on intersarcomere dynamics.
    Meyer GA; Kiss B; Ward SR; Morgan DL; Kellermayer MS; Lieber RL
    Biophys J; 2010 Jan; 98(2):258-66. PubMed ID: 20338847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Desmin knockout muscles generate lower stress and are less vulnerable to injury compared with wild-type muscles.
    Sam M; Shah S; Fridén J; Milner DJ; Capetanaki Y; Lieber RL
    Am J Physiol Cell Physiol; 2000 Oct; 279(4):C1116-22. PubMed ID: 11003592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early signs of architectural and biomechanical failure in isolated myofibers and immortalized myoblasts from desmin-mutant knock-in mice.
    Diermeier S; Iberl J; Vetter K; Haug M; Pollmann C; Reischl B; Buttgereit A; Schürmann S; Spörrer M; Goldmann WH; Fabry B; Elhamine F; Stehle R; Pfitzer G; Winter L; Clemen CS; Herrmann H; Schröder R; Friedrich O
    Sci Rep; 2017 May; 7(1):1391. PubMed ID: 28469177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Desmin filaments influence myofilament spacing and lateral compliance of slow skeletal muscle fibers.
    Balogh J; Li Z; Paulin D; Arner A
    Biophys J; 2005 Feb; 88(2):1156-65. PubMed ID: 15542565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for increased myofibrillar mobility in desmin-null mouse skeletal muscle.
    Shah SB; Su FC; Jordan K; Milner DJ; Fridén J; Capetanaki Y; Lieber RL
    J Exp Biol; 2002 Feb; 205(Pt 3):321-5. PubMed ID: 11854369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basis of passive tension and stiffness in isolated rabbit myofibrils.
    Bartoo ML; Linke WA; Pollack GH
    Am J Physiol; 1997 Jul; 273(1 Pt 1):C266-76. PubMed ID: 9252465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetanic contraction induces enhancement of fatigability and sarcomeric damage in atrophic skeletal muscle and its underlying molecular mechanisms.
    Yu ZB
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2013 Nov; 29(6):525-33. PubMed ID: 24654535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive muscle stiffness may be influenced by active contractility of intramuscular connective tissue.
    Schleip R; Naylor IL; Ursu D; Melzer W; Zorn A; Wilke HJ; Lehmann-Horn F; Klingler W
    Med Hypotheses; 2006; 66(1):66-71. PubMed ID: 16209907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiology, structure, and susceptibility to injury of skeletal muscle in mice lacking keratin 19-based and desmin-based intermediate filaments.
    Lovering RM; O'Neill A; Muriel JM; Prosser BL; Strong J; Bloch RJ
    Am J Physiol Cell Physiol; 2011 Apr; 300(4):C803-13. PubMed ID: 21209367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growing Old Too Early: Skeletal Muscle Single Fiber Biomechanics in Ageing R349P Desmin Knock-in Mice Using the
    Pollmann C; Haug M; Reischl B; Prölß G; Pöschel T; Rupitsch SJ; Clemen CS; Schröder R; Friedrich O
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32752098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic Models in Applied Physiology. Merosin deficiency leads to alterations in passive and active skeletal muscle mechanics.
    Jannapureddy SR; Patel ND; Hwang W; Boriek AM
    J Appl Physiol (1985); 2003 Jun; 94(6):2524-33; discussion 2523. PubMed ID: 12736195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knockdown of desmin in zebrafish larvae affects interfilament spacing and mechanical properties of skeletal muscle.
    Li M; Andersson-Lendahl M; Sejersen T; Arner A
    J Gen Physiol; 2013 Mar; 141(3):335-45. PubMed ID: 23440276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Desmin-related myopathies in mice and man.
    Carlsson L; Thornell LE
    Acta Physiol Scand; 2001 Mar; 171(3):341-8. PubMed ID: 11412147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytoskeletal disruption after eccentric contraction-induced muscle injury.
    Lieber RL; Shah S; Fridén J
    Clin Orthop Relat Res; 2002 Oct; (403 Suppl):S90-9. PubMed ID: 12394457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.