BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11439928)

  • 1. ATP-dependent activation of the intermediate conductance, Ca2+-activated K+ channel, hIK1, is conferred by a C-terminal domain.
    Gerlach AC; Syme CA; Giltinan L; Adelman JP; Devors DC
    J Biol Chem; 2001 Jun; 276(24):10963-70. PubMed ID: 11439928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP-dependent activation of the intermediate conductance, Ca2+-activated K+ channel, hIK1, is conferred by a C-terminal domain.
    Gerlach AC; Syme CA; Giltinan L; Adelman JP; Devor DC
    J Biol Chem; 2001 Apr; 276(14):10963-70. PubMed ID: 11096085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinase-dependent regulation of the intermediate conductance, calcium-dependent potassium channel, hIK1.
    Gerlach AC; Gangopadhyay NN; Devor DC
    J Biol Chem; 2000 Jan; 275(1):585-98. PubMed ID: 10617655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular localization of the inhibitory arachidonic acid binding site to the pore of hIK1.
    Hamilton KL; Syme CA; Devor DC
    J Biol Chem; 2003 May; 278(19):16690-7. PubMed ID: 12609997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacological activation of cloned intermediate- and small-conductance Ca(2+)-activated K(+) channels.
    Syme CA; Gerlach AC; Singh AK; Devor DC
    Am J Physiol Cell Physiol; 2000 Mar; 278(3):C570-81. PubMed ID: 10712246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An NH2-terminal multi-basic RKR motif is required for the ATP-dependent regulation of hIK1.
    Jones HM; Bailey MA; Baty CJ; Macgregor GG; Syme CA; Hamilton KL; Devor DC
    Channels (Austin); 2007; 1(2):80-91. PubMed ID: 18690018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of the human intermediate conductance Ca(2+)-activated K(+) channel, hIK1, by volatile anesthetics.
    Namba T; Ishii TM; Ikeda M; Hisano T; Itoh T; Hirota K; Adelman JP; Fukuda K
    Eur J Pharmacol; 2000 Apr; 395(2):95-101. PubMed ID: 10794813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the NH2 terminus in the assembly and trafficking of the intermediate conductance Ca2+-activated K+ channel hIK1.
    Jones HM; Hamilton KL; Papworth GD; Syme CA; Watkins SC; Bradbury NA; Devor DC
    J Biol Chem; 2004 Apr; 279(15):15531-40. PubMed ID: 14754884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A human intermediate conductance calcium-activated potassium channel.
    Ishii TM; Silvia C; Hirschberg B; Bond CT; Adelman JP; Maylie J
    Proc Natl Acad Sci U S A; 1997 Oct; 94(21):11651-6. PubMed ID: 9326665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trafficking of the Ca2+-activated K+ channel, hIK1, is dependent upon a C-terminal leucine zipper.
    Syme CA; Hamilton KL; Jones HM; Gerlach AC; Giltinan L; Papworth GD; Watkins SC; Bradbury NA; Devor DC
    J Biol Chem; 2003 Mar; 278(10):8476-86. PubMed ID: 12493744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unexpected down-regulation of the hIK1 Ca2+-activated K+ channel by its opener 1-ethyl-2-benzimidazolinone in HaCaT keratinocytes. Inverse effects on cell growth and proliferation.
    Koegel H; Kaesler S; Burgstahler R; Werner S; Alzheimer C
    J Biol Chem; 2003 Jan; 278(5):3323-30. PubMed ID: 12421833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gating of recombinant small-conductance Ca-activated K+ channels by calcium.
    Hirschberg B; Maylie J; Adelman JP; Marrion NV
    J Gen Physiol; 1998 Apr; 111(4):565-81. PubMed ID: 9524139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytoplasmic terminus domains of Kir6.x confer different nucleotide-dependent gating on the ATP-sensitive K+ channel.
    Takano M; Xie LH; Otani H; Horie M
    J Physiol; 1998 Oct; 512 ( Pt 2)(Pt 2):395-406. PubMed ID: 9763630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.
    Jäger H; Grissmer S
    Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular ATP inhibits the small-conductance K channel on the apical membrane of the cortical collecting duct from mouse kidney.
    Lu M; MacGregor GG; Wang W; Giebisch G
    J Gen Physiol; 2000 Aug; 116(2):299-310. PubMed ID: 10919872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two types of voltage-dependent potassium channels in outer hair cells from the guinea pig cochlea.
    van Den Abbeele T; Teulon J; Huy PT
    Am J Physiol; 1999 Nov; 277(5):C913-25. PubMed ID: 10564084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of S3 and S4 transmembrane domain charged amino acids in channel biogenesis and gating of KCa2.3 and KCa3.1.
    Gao Y; Chotoo CK; Balut CM; Sun F; Bailey MA; Devor DC
    J Biol Chem; 2008 Apr; 283(14):9049-59. PubMed ID: 18227067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brownian dynamics simulations of the recognition of the scorpion toxin P05 with the small-conductance calcium-activated potassium channels.
    Cui M; Shen J; Briggs JM; Fu W; Wu J; Zhang Y; Luo X; Chi Z; Ji R; Jiang H; Chen K
    J Mol Biol; 2002 Apr; 318(2):417-28. PubMed ID: 12051848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional and molecular identification of intermediate-conductance Ca(2+)-activated K(+) channels in breast cancer cells: association with cell cycle progression.
    Ouadid-Ahidouch H; Roudbaraki M; Delcourt P; Ahidouch A; Joury N; Prevarskaya N
    Am J Physiol Cell Physiol; 2004 Jul; 287(1):C125-34. PubMed ID: 14985237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Domains responsible for constitutive and Ca(2+)-dependent interactions between calmodulin and small conductance Ca(2+)-activated potassium channels.
    Keen JE; Khawaled R; Farrens DL; Neelands T; Rivard A; Bond CT; Janowsky A; Fakler B; Adelman JP; Maylie J
    J Neurosci; 1999 Oct; 19(20):8830-8. PubMed ID: 10516302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.