BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 11440130)

  • 1. Mutation analysis of the feedback inhibition site of aspartokinase III of Escherichia coli K-12 and its use in L-threonine production.
    Ogawa-Miyata Y; Kojima H; Sano K
    Biosci Biotechnol Biochem; 2001 May; 65(5):1149-54. PubMed ID: 11440130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational analysis of the feedback sites of lysine-sensitive aspartokinase of Escherichia coli.
    Kikuchi Y; Kojima H; Tanaka T
    FEMS Microbiol Lett; 1999 Apr; 173(1):211-5. PubMed ID: 10220897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of lysine-sensitive aspartokinase III on lysine biosynthesis in Escherichia coli K-12.
    Huang KJ; Hseu TH
    Proc Natl Sci Counc Repub China B; 1993 Jul; 17(3):91-7. PubMed ID: 8290655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-directed mutagenesis of Escherichia coli acetylglutamate kinase and aspartokinase III probes the catalytic and substrate-binding mechanisms of these amino acid kinase family enzymes and allows three-dimensional modelling of aspartokinase.
    Marco-Marín C; Ramón-Maiques S; Tavárez S; Rubio V
    J Mol Biol; 2003 Nov; 334(3):459-76. PubMed ID: 14623187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. epsilon-Poly-L: -lysine producer, Streptomyces albulus, has feedback-inhibition resistant aspartokinase.
    Hamano Y; Nicchu I; Shimizu T; Onji Y; Hiraki J; Takagi H
    Appl Microbiol Biotechnol; 2007 Sep; 76(4):873-82. PubMed ID: 17611754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus.
    Jakobsen OM; Brautaset T; Degnes KF; Heggeset TM; Balzer S; Flickinger MC; Valla S; Ellingsen TE
    Appl Environ Microbiol; 2009 Feb; 75(3):652-61. PubMed ID: 19060158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the L-lysine biosynthetic pathway in the obligate methylotroph Methylophilus methylotrophus.
    Gunji Y; Tsujimoto N; Shimaoka M; Ogawa-Miyata Y; Sugimoto S; Yasueda H
    Biosci Biotechnol Biochem; 2004 Jul; 68(7):1449-60. PubMed ID: 15277749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aspartokinase genes lysC alpha and lysC beta overlap and are adjacent to the aspartate beta-semialdehyde dehydrogenase gene asd in Corynebacterium glutamicum.
    Kalinowski J; Bachmann B; Thierbach G; Pühler A
    Mol Gen Genet; 1990 Dec; 224(3):317-24. PubMed ID: 1980002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aspartokinase III repression in a thialysine-resistant mutant of E. coli.
    Di Girolamo M; Busiello V; Di Girolamo A; Foppoli C; De Marco C
    Biochem Int; 1988 Sep; 17(3):545-54. PubMed ID: 2849443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Construction of recombinant plasmids containing threonine operon and their effects on L-threonine accumulation].
    Zhang X; Yan J; Yu L; Zhang G; Zhang Y; Chen N; Wen T
    Wei Sheng Wu Xue Bao; 2009 May; 49(5):591-6. PubMed ID: 19637565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of a feedback-resistant aspartokinase III gene on L-isoleucine production in Escherichia coli K-12.
    Hashiguchi K; Matsui H; Kurahashi O
    Biosci Biotechnol Biochem; 1999 Nov; 63(11):2023-4. PubMed ID: 10635571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide sequence of lysC gene encoding the lysine-sensitive aspartokinase III of Escherichia coli K12. Evolutionary pathway leading to three isofunctional enzymes.
    Cassan M; Parsot C; Cohen GN; Patte JC
    J Biol Chem; 1986 Jan; 261(3):1052-7. PubMed ID: 3003049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and expression of an Arabidopsis thaliana cDNA encoding a monofunctional aspartate kinase homologous to the lysine-sensitive enzyme of Escherichia coli.
    Tang G; Zhu-Shimoni JX; Amir R; Zchori IB; Galili G
    Plant Mol Biol; 1997 May; 34(2):287-93. PubMed ID: 9207844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations that cause threonine sensitivity identify catalytic and regulatory regions of the aspartate kinase of Saccharomyces cerevisiae.
    Arévalo-Rodríguez M; Calderón IL; Holmberg S
    Yeast; 1999 Sep; 15(13):1331-45. PubMed ID: 10509015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression in Escherichia coli, purification and kinetic analysis of the aspartokinase and aspartate semialdehyde dehydrogenase from the rifamycin SV-producing Amycolatopsis mediterranei U32.
    Zhang WW; Jiang WH; Zhao GP; Yang YL; Chiao JS
    Appl Microbiol Biotechnol; 2000 Jul; 54(1):52-8. PubMed ID: 10952005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of a chimeric aspartate kinase for L-lysine production using a synthetic RNA device.
    Wang J; Gao D; Yu X; Li W; Qi Q
    Appl Microbiol Biotechnol; 2015 Oct; 99(20):8527-36. PubMed ID: 25935345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures of R- and T-state Escherichia coli aspartokinase III. Mechanisms of the allosteric transition and inhibition by lysine.
    Kotaka M; Ren J; Lockyer M; Hawkins AR; Stammers DK
    J Biol Chem; 2006 Oct; 281(42):31544-52. PubMed ID: 16905770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating molecular dynamics and co-evolutionary analysis for reliable target prediction and deregulation of the allosteric inhibition of aspartokinase for amino acid production.
    Chen Z; Rappert S; Sun J; Zeng AP
    J Biotechnol; 2011 Jul; 154(4):248-54. PubMed ID: 21609739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A possible role of the effect of methionine on the activity of aspartokinase in sporulation of a Streptomyces fradiae mutant.
    Vargha G
    Acta Biol Hung; 1997; 48(3):281-8. PubMed ID: 9406608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolically engineered soybean seed with enhanced threonine levels: biochemical characterization and seed-specific expression of lysine-insensitive variants of aspartate kinases from the enteric bacterium Xenorhabdus bovienii.
    Qi Q; Huang J; Crowley J; Ruschke L; Goldman BS; Wen L; Rapp WD
    Plant Biotechnol J; 2011 Feb; 9(2):193-204. PubMed ID: 20633240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.