These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 11440813)

  • 1. Apamin-induced irregular firing in vitro and irregular single-spike firing observed in vivo in dopamine neurons is chaotic.
    Lovejoy LP; Shepard PD; Canavier CC
    Neuroscience; 2001; 104(3):829-40. PubMed ID: 11440813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SK Ca2+-activated K+ channel ligands alter the firing pattern of dopamine-containing neurons in vivo.
    Ji H; Shepard PD
    Neuroscience; 2006 Jun; 140(2):623-33. PubMed ID: 16564639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling of prediction error does not confirm chaotic dynamics underlying irregular firing using interspike intervals from midbrain dopamine neurons.
    Canavier CC; Perla SR; Shepard PD
    Neuroscience; 2004; 129(2):491-502. PubMed ID: 15501606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons.
    Wolfart J; Roeper J
    J Neurosci; 2002 May; 22(9):3404-13. PubMed ID: 11978817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopamine neuron responses depend exponentially on pacemaker interval.
    Putzier I; Kullmann PH; Horn JP; Levitan ES
    J Neurophysiol; 2009 Feb; 101(2):926-33. PubMed ID: 19073798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apamin-sensitive Ca(2+)-activated K+ channels regulate pacemaker activity in nigral dopamine neurons.
    Ping HX; Shepard PD
    Neuroreport; 1996 Feb; 7(3):809-14. PubMed ID: 8733751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repetitive firing properties of putative dopamine-containing neurons in vitro: regulation by an apamin-sensitive Ca(2+)-activated K+ conductance.
    Shepard PD; Bunney BS
    Exp Brain Res; 1991; 86(1):141-50. PubMed ID: 1756785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subtypes of substantia nigra dopaminergic neurons revealed by apamin: autoradiographic and electrophysiological studies.
    Gu X; Blatz AL; German DC
    Brain Res Bull; 1992 Mar; 28(3):435-40. PubMed ID: 1350500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons.
    Wolfart J; Neuhoff H; Franz O; Roeper J
    J Neurosci; 2001 May; 21(10):3443-56. PubMed ID: 11331374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nifedipine blocks apamin-induced bursting activity in nigral dopamine-containing neurons.
    Shepard PD; Stump D
    Brain Res; 1999 Jan; 817(1-2):104-9. PubMed ID: 9889338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bicuculline methiodide potentiates NMDA-dependent burst firing in rat dopamine neurons by blocking apamin-sensitive Ca2+-activated K+ currents.
    Johnson SW; Seutin V
    Neurosci Lett; 1997 Aug; 231(1):13-6. PubMed ID: 9280156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABAergic control of rat substantia nigra dopaminergic neurons: role of globus pallidus and substantia nigra pars reticulata.
    Celada P; Paladini CA; Tepper JM
    Neuroscience; 1999 Mar; 89(3):813-25. PubMed ID: 10199615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonselective cation channels are essential for maintaining intracellular Ca2+ levels and spontaneous firing activity in the midbrain dopamine neurons.
    Kim SH; Choi YM; Jang JY; Chung S; Kang YK; Park MK
    Pflugers Arch; 2007 Nov; 455(2):309-21. PubMed ID: 17492308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the excitability of midbrain dopamine neurons by modulating the Ca2+ sensitivity of SK channels.
    Ji H; Hougaard C; Herrik KF; Strøbaek D; Christophersen P; Shepard PD
    Eur J Neurosci; 2009 May; 29(9):1883-95. PubMed ID: 19473240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear sequence-dependent structure of nigral dopamine neuron interspike interval firing patterns.
    Hoffman RE; Shi WX; Bunney BS
    Biophys J; 1995 Jul; 69(1):128-37. PubMed ID: 7669889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of apamin on the discharge properties of putative dopamine-containing neurons in vitro.
    Shepard PD; Bunney BS
    Brain Res; 1988 Nov; 463(2):380-4. PubMed ID: 3196925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled oscillator model of the dopaminergic neuron of the substantia nigra.
    Wilson CJ; Callaway JC
    J Neurophysiol; 2000 May; 83(5):3084-100. PubMed ID: 10805703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons.
    Komendantov AO; Komendantova OG; Johnson SW; Canavier CC
    J Neurophysiol; 2004 Jan; 91(1):346-57. PubMed ID: 13679411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two pathways for the activation of small-conductance potassium channels in neurons of substantia nigra pars reticulata.
    Yanovsky Y; Zhang W; Misgeld U
    Neuroscience; 2005; 136(4):1027-36. PubMed ID: 16203104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamate-mediated [Ca2+]c dynamics in spontaneously firing dopamine neurons of the rat substantia nigra pars compacta.
    Choi YM; Kim SH; Uhm DY; Park MK
    J Cell Sci; 2003 Jul; 116(Pt 13):2665-75. PubMed ID: 12746490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.