These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
389 related articles for article (PubMed ID: 11440910)
1. Regulation of fatty acid oxidation and glucose metabolism in rat soleus muscle: effects of AICAR. Kaushik VK; Young ME; Dean DJ; Kurowski TG; Saha AK; Ruderman NB Am J Physiol Endocrinol Metab; 2001 Aug; 281(2):E335-40. PubMed ID: 11440910 [TBL] [Abstract][Full Text] [Related]
2. Insulin stimulation of glucose uptake fails to decrease palmitate oxidation in muscle if AMPK is activated. Winder WW; Holmes BF J Appl Physiol (1985); 2000 Dec; 89(6):2430-7. PubMed ID: 11090599 [TBL] [Abstract][Full Text] [Related]
3. Influence of malonyl-CoA and palmitate concentration on rate of palmitate oxidation in rat muscle. Merrill GF; Kurth EJ; Rasmussen BB; Winder WW J Appl Physiol (1985); 1998 Nov; 85(5):1909-14. PubMed ID: 9804598 [TBL] [Abstract][Full Text] [Related]
4. LKB1 and the regulation of malonyl-CoA and fatty acid oxidation in muscle. Thomson DM; Brown JD; Fillmore N; Condon BM; Kim HJ; Barrow JR; Winder WW Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1572-9. PubMed ID: 17925454 [TBL] [Abstract][Full Text] [Related]
5. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Merrill GF; Kurth EJ; Hardie DG; Winder WW Am J Physiol; 1997 Dec; 273(6):E1107-12. PubMed ID: 9435525 [TBL] [Abstract][Full Text] [Related]
6. Acute regulation of fatty acid oxidation and amp-activated protein kinase in human umbilical vein endothelial cells. Dagher Z; Ruderman N; Tornheim K; Ido Y Circ Res; 2001 Jun; 88(12):1276-82. PubMed ID: 11420304 [TBL] [Abstract][Full Text] [Related]
7. AMPK activation is not critical in the regulation of muscle FA uptake and oxidation during low-intensity muscle contraction. Raney MA; Yee AJ; Todd MK; Turcotte LP Am J Physiol Endocrinol Metab; 2005 Mar; 288(3):E592-8. PubMed ID: 15547141 [TBL] [Abstract][Full Text] [Related]
8. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Tomas E; Tsao TS; Saha AK; Murrey HE; Zhang Cc Cc; Itani SI; Lodish HF; Ruderman NB Proc Natl Acad Sci U S A; 2002 Dec; 99(25):16309-13. PubMed ID: 12456889 [TBL] [Abstract][Full Text] [Related]
9. Impact of in vivo fatty acid oxidation blockade on glucose turnover and muscle glucose metabolism during low-dose AICAR infusion. Christopher M; Rantzau C; Chen ZP; Snow R; Kemp B; Alford FP Am J Physiol Endocrinol Metab; 2006 Nov; 291(5):E1131-40. PubMed ID: 16772328 [TBL] [Abstract][Full Text] [Related]
10. Effect of fiber type and nutritional state on AICAR- and contraction-stimulated glucose transport in rat muscle. Ai H; Ihlemann J; Hellsten Y; Lauritzen HP; Hardie DG; Galbo H; Ploug T Am J Physiol Endocrinol Metab; 2002 Jun; 282(6):E1291-300. PubMed ID: 12006359 [TBL] [Abstract][Full Text] [Related]
11. Control of hepatic fatty acid oxidation by 5'-AMP-activated protein kinase involves a malonyl-CoA-dependent and a malonyl-CoA-independent mechanism. Velasco G; Geelen MJ; Guzmán M Arch Biochem Biophys; 1997 Jan; 337(2):169-75. PubMed ID: 9016810 [TBL] [Abstract][Full Text] [Related]
12. AMP kinase activation with AICAR simultaneously increases fatty acid and glucose oxidation in resting rat soleus muscle. Smith AC; Bruce CR; Dyck DJ J Physiol; 2005 Jun; 565(Pt 2):537-46. PubMed ID: 15774530 [TBL] [Abstract][Full Text] [Related]
13. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside-induced AMP-activated protein kinase phosphorylation inhibits basal and insulin-stimulated glucose uptake, lipid synthesis, and fatty acid oxidation in isolated rat adipocytes. Gaidhu MP; Fediuc S; Ceddia RB J Biol Chem; 2006 Sep; 281(36):25956-64. PubMed ID: 16816404 [TBL] [Abstract][Full Text] [Related]
15. AMP-activated protein kinase activation by AICAR increases both muscle fatty acid and glucose uptake in white muscle of insulin-resistant rats in vivo. Iglesias MA; Furler SM; Cooney GJ; Kraegen EW; Ye JM Diabetes; 2004 Jul; 53(7):1649-54. PubMed ID: 15220186 [TBL] [Abstract][Full Text] [Related]
16. AMP kinase activation with AICAR further increases fatty acid oxidation and blunts triacylglycerol hydrolysis in contracting rat soleus muscle. Smith AC; Bruce CR; Dyck DJ J Physiol; 2005 Jun; 565(Pt 2):547-53. PubMed ID: 15774529 [TBL] [Abstract][Full Text] [Related]
17. Activation of malonyl-CoA decarboxylase in rat skeletal muscle by contraction and the AMP-activated protein kinase activator 5-aminoimidazole-4-carboxamide-1-beta -D-ribofuranoside. Saha AK; Schwarsin AJ; Roduit R; Masse F; Kaushik V; Tornheim K; Prentki M; Ruderman NB J Biol Chem; 2000 Aug; 275(32):24279-83. PubMed ID: 10854420 [TBL] [Abstract][Full Text] [Related]
18. Short-term adenosine monophosphate-activated protein kinase activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside treatment increases the sirtuin 1 protein expression in skeletal muscle. Suwa M; Nakano H; Radak Z; Kumagai S Metabolism; 2011 Mar; 60(3):394-403. PubMed ID: 20362304 [TBL] [Abstract][Full Text] [Related]
19. AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats. Assifi MM; Suchankova G; Constant S; Prentki M; Saha AK; Ruderman NB Am J Physiol Endocrinol Metab; 2005 Nov; 289(5):E794-800. PubMed ID: 15956049 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of insulin-stimulated glycogen synthesis by 5-aminoimidasole-4-carboxamide-1-beta-d-ribofuranoside-induced adenosine 5'-monophosphate-activated protein kinase activation: interactions with Akt, glycogen synthase kinase 3-3alpha/beta, and glycogen synthase in isolated rat soleus muscle. Fediuc S; Gaidhu MP; Ceddia RB Endocrinology; 2006 Nov; 147(11):5170-7. PubMed ID: 16873531 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]