These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 11442032)

  • 1. Determination of estrogens in river water by gas chromatography-negative-ion chemical-ionization mass spectrometry.
    Nakamura S; Sian TH; Daishima S
    J Chromatogr A; 2001 Jun; 919(2):275-82. PubMed ID: 11442032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trace level determination of phenols as pentafluorobenzyl derivatives by gas chromatography-negative-ion chemical ionization mass spectrometry.
    Nakamura S; Takino M; Daishima S
    Analyst; 2001 Jun; 126(6):835-9. PubMed ID: 11445947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitation of estrogens in ground water and swine lagoon samples using solid-phase extraction, pentafluorobenzyl/trimethylsilyl derivatizations and gas chromatography-negative ion chemical ionization tandem mass spectrometry.
    Fine DD; Breidenbach GP; Price TL; Hutchins SR
    J Chromatogr A; 2003 Oct; 1017(1-2):167-85. PubMed ID: 14584702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of estrogens in river water and effluents using solid-phase extraction and gas chromatography-negative chemical ionisation mass spectrometry of the pentafluorobenzoyl derivatives.
    Xiao XY; McCalley DV; McEvoy J
    J Chromatogr A; 2001 Jul; 923(1-2):195-204. PubMed ID: 11510542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of natural and synthetic estrogens in water by gas chromatography with mass spectrometric detection.
    Quintana JB; Carpinteiro J; Rodríguez I; Lorenzo RA; Carro AM; Cela R
    J Chromatogr A; 2004 Jan; 1024(1-2):177-85. PubMed ID: 14753720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved method for analyzing estrogens in water by liquid chromatography-electrospray mass spectrometry.
    Hu J; Zhang H; Chang H
    J Chromatogr A; 2005 Apr; 1070(1-2):221-4. PubMed ID: 15861809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-high performance liquid chromatography/tandem mass spectrometry determination of feminizing chemicals in river water, sediment and tissue pretreated using disk-type solid-phase extraction and matrix solid-phase dispersion.
    Chen WL; Wang GS; Gwo JC; Chen CY
    Talanta; 2012 Jan; 89():237-45. PubMed ID: 22284486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Derivatization procedures for the detection of estrogenic chemicals by gas chromatography/mass spectrometry.
    Ding WH; Chiang CC
    Rapid Commun Mass Spectrom; 2003; 17(1):56-63. PubMed ID: 12478555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of steroid estrogen daily concentrations in hospital effluent and connected waste water treatment plant.
    Avberšek M; Sömen J; Heath E
    J Environ Monit; 2011 Aug; 13(8):2221-6. PubMed ID: 21727965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully automated analysis of estrogens in environmental waters by in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry.
    Mitani K; Fujioka M; Kataoka H
    J Chromatogr A; 2005 Jul; 1081(2):218-24. PubMed ID: 16038212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GC-ECNICI-MS/MS of eicosanoids as pentafluorobenzyl-trimethylsilyl (TMS) derivatives: Evidence of CAD-induced intramolecular TMS ether-to-ester rearrangement using carboxy-
    Tsikas D
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Mar; 1047():185-196. PubMed ID: 27352806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of estrogens in sludge and sediments by liquid extraction and GC/MS/MS.
    Temes TA; Andersen H; Gilberg D; Bonerz M
    Anal Chem; 2002 Jul; 74(14):3498-504. PubMed ID: 12139060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trace analysis of estrogenic chemicals in sewage effluent using liquid chromatography combined with tandem mass spectrometry.
    Laganà A; Bacaloni A; Fago G; Marino A
    Rapid Commun Mass Spectrom; 2000; 14(6):401-7. PubMed ID: 10717648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization for determining estrogenic chemicals in water by liquid chromatography tandem mass spectrometry with chemical derivatizations.
    Lien GW; Chen CY; Wang GS
    J Chromatogr A; 2009 Feb; 1216(6):956-66. PubMed ID: 19118834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of steroidal estrogens in flushed dairy manure wastewater by gas chromatography-mass spectrometry.
    Hanselman TA; Graetz DA; Wilkie AC; Szabo NJ; Diaz CS
    J Environ Qual; 2006; 35(3):695-700. PubMed ID: 16585610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range.
    Kuch HM; Ballschmiter K
    Environ Sci Technol; 2001 Aug; 35(15):3201-6. PubMed ID: 11506003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and validation of an analytical method for detection of estrogens in water.
    Noppe H; De Wasch K; Poelmans S; Van Hoof N; Verslycke T; Janssen CR; De Brabander HF
    Anal Bioanal Chem; 2005 May; 382(1):91-8. PubMed ID: 15900457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of steroidal oestrogens in tap water samples using solid-phase extraction on a molecularly imprinted polymer sorbent and quantification with gas chromatography-mass spectrometry (GC-MS).
    Zacs D; Perkons I; Bartkevics V
    Environ Monit Assess; 2016 Jul; 188(7):433. PubMed ID: 27344558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous determination of 64 pesticides in river water by stir bar sorptive extraction and thermal desorption-gas chromatography-mass spectrometry.
    Nakamura S; Daishima S
    Anal Bioanal Chem; 2005 May; 382(1):99-107. PubMed ID: 15900458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-source formation of N-acetyl-p-benzoquinone imine (NAPQI), the putatively toxic acetaminophen (paracetamol) metabolite, after derivatization with pentafluorobenzyl bromide and GC-ECNICI-MS analysis.
    Tsikas D; Trettin A; Zörner AA; Gutzki FM
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 May; 879(17-18):1476-84. PubMed ID: 21353649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.