These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 11442297)

  • 1. Aligned microcontact printing of biomolecules on microelectronic device surfaces.
    Lauer L; Ingebrandt S; Scholl M; Offenhäusser A
    IEEE Trans Biomed Eng; 2001 Jul; 48(7):838-42. PubMed ID: 11442297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growing neuronal islands on multi-electrode arrays using an accurate positioning-μCP device.
    Samhaber R; Schottdorf M; El Hady A; Bröking K; Daus A; Thielemann C; Stühmer W; Wolf F
    J Neurosci Methods; 2016 Jan; 257():194-203. PubMed ID: 26432934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays.
    James CD; Davis R; Meyer M; Turner A; Turner S; Withers G; Kam L; Banker G; Craighead H; Isaacson M; Turner J; Shain W
    IEEE Trans Biomed Eng; 2000 Jan; 47(1):17-21. PubMed ID: 10646274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular recordings from patterned neuronal networks using planar microelectrode arrays.
    James CD; Spence AJ; Dowell-Mesfin NM; Hussain RJ; Smith KL; Craighead HG; Isaacson MS; Shain W; Turner JN
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1640-8. PubMed ID: 15376512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microcontact printing.
    Xie Y; Jiang X
    Methods Mol Biol; 2011; 671():239-48. PubMed ID: 20967634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed retinal nerve cell growth for use in a retinal prosthesis interface.
    Leng T; Wu P; Mehenti NZ; Bent SF; Marmor MF; Blumenkranz MS; Fishman HA
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4132-7. PubMed ID: 15505066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ordered networks of rat hippocampal neurons attached to silicon oxide surfaces.
    Scholl M; Sprössler C; Denyer M; Krause M; Nakajima K; Maelicke A; Knoll W; Offenhäusser A
    J Neurosci Methods; 2000 Dec; 104(1):65-75. PubMed ID: 11163412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PDMS device for patterned application of microfluids to neuronal cells arranged by microcontact printing.
    Thiébaud P; Lauer L; Knoll W; Offenhäusser A
    Biosens Bioelectron; 2002 Jan; 17(1-2):87-93. PubMed ID: 11742739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(dimethylsiloxane) contamination in microcontact printing and its influence on patterning oligonucleotides.
    Thibault C; Séverac C; Mingotaud AF; Vieu C; Mauzac M
    Langmuir; 2007 Oct; 23(21):10706-14. PubMed ID: 17803329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Humidified microcontact printing of proteins: universal patterning of proteins on both low and high energy surfaces.
    Ricoult SG; Nezhad AS; Knapp-Mohammady M; Kennedy TE; Juncker D
    Langmuir; 2014 Oct; 30(40):12002-10. PubMed ID: 25222734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microcontact printing of laminin on oxygen plasma activated substrates for the alignment and growth of Schwann cells.
    Wang DY; Huang YC; Chiang H; Wo AM; Huang YY
    J Biomed Mater Res B Appl Biomater; 2007 Feb; 80(2):447-53. PubMed ID: 16862562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein patterning by microcontact printing using pyramidal PDMS stamps.
    Filipponi L; Livingston P; Kašpar O; Tokárová V; Nicolau DV
    Biomed Microdevices; 2016 Feb; 18(1):9. PubMed ID: 26782964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soft lithographic printing of patterns of stretched DNA and DNA/electronic polymer wires by surface-energy modification and transfer.
    Björk P; Holmström S; Inganäs O
    Small; 2006 Aug; 2(8-9):1068-74. PubMed ID: 17193170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modified microstamping technique enhances polylysine transfer and neuronal cell patterning.
    Chang JC; Brewer GJ; Wheeler BC
    Biomaterials; 2003 Aug; 24(17):2863-70. PubMed ID: 12742724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-density neuronal networks cultured using patterned poly-l-lysine on microelectrode arrays.
    Jun SB; Hynd MR; Dowell-Mesfin N; Smith KL; Turner JN; Shain W; Kim SJ
    J Neurosci Methods; 2007 Mar; 160(2):317-26. PubMed ID: 17049614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-precision robotic microcontact printing (R-μCP) utilizing a vision guided selectively compliant articulated robotic arm.
    McNulty JD; Klann T; Sha J; Salick M; Knight GT; Turng LS; Ashton RS
    Lab Chip; 2014 Jun; 14(11):1923-30. PubMed ID: 24759945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microcontact printing for precise control of nerve cell growth in culture.
    Wheeler BC; Corey JM; Brewer GJ; Branch DW
    J Biomech Eng; 1999 Feb; 121(1):73-8. PubMed ID: 10080092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially resolved non-invasive chemical stimulation for modulation of signalling in reconstructed neuronal networks.
    Mourzina Y; Steffen A; Kaliaguine D; Wolfrum B; Schulte P; Böcker-Meffert S; Offenhäusser A
    J R Soc Interface; 2006 Apr; 3(7):333-43. PubMed ID: 16849242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-patterned cell-sheets fabricated with stamping-force-controlled micro-contact printing.
    Tanaka N; Ota H; Fukumori K; Miyake J; Yamato M; Okano T
    Biomaterials; 2014 Dec; 35(37):9802-9810. PubMed ID: 25239040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface immobilization of neural adhesion molecule L1 for improving the biocompatibility of chronic neural probes: In vitro characterization.
    Azemi E; Stauffer WR; Gostock MS; Lagenaur CF; Cui XT
    Acta Biomater; 2008 Sep; 4(5):1208-17. PubMed ID: 18420473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.