BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 11443356)

  • 1. Are red algae plants? A critical evaluation of three key molecular data sets.
    Stiller JW; Riley J; Hall BD
    J Mol Evol; 2001 Jun; 52(6):527-39. PubMed ID: 11443356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The origin of red algae: implications for plastid evolution.
    Stiller JW; Hall BD
    Proc Natl Acad Sci U S A; 1997 Apr; 94(9):4520-5. PubMed ID: 9114022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A "green" phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates.
    Petersen J; Teich R; Brinkmann H; Cerff R
    J Mol Evol; 2006 Feb; 62(2):143-57. PubMed ID: 16474987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The largest subunit of RNA polymerase II from the Glaucocystophyta: functional constraint and short-branch exclusion in deep eukaryotic phylogeny.
    Stiller JW; Harrell L
    BMC Evol Biol; 2005 Dec; 5():71. PubMed ID: 16336687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The origin of red algae and the evolution of chloroplasts.
    Moreira D; Le Guyader H; Philippe H
    Nature; 2000 May; 405(6782):69-72. PubMed ID: 10811219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
    Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes.
    Lee J; Kim KM; Yang EC; Miller KA; Boo SM; Bhattacharya D; Yoon HS
    Sci Rep; 2016 Mar; 6():23744. PubMed ID: 27030297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two types of FtsZ proteins in mitochondria and red-lineage chloroplasts: the duplication of FtsZ is implicated in endosymbiosis.
    Miyagishima SY; Nozaki H; Nishida K; Nishida K; Matsuzaki M; Kuroiwa T
    J Mol Evol; 2004 Mar; 58(3):291-303. PubMed ID: 15045484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete sequence of the mitochondrial DNA of the red alga Porphyra purpurea. Cyanobacterial introns and shared ancestry of red and green algae.
    Burger G; Saint-Louis D; Gray MW; Lang BF
    Plant Cell; 1999 Sep; 11(9):1675-94. PubMed ID: 10488235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterotachy processes in rhodophyte-derived secondhand plastid genes: Implications for addressing the origin and evolution of dinoflagellate plastids.
    Shalchian-Tabrizi K; Skånseng M; Ronquist F; Klaveness D; Bachvaroff TR; Delwiche CF; Botnen A; Tengs T; Jakobsen KS
    Mol Biol Evol; 2006 Aug; 23(8):1504-15. PubMed ID: 16699169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily.
    Engelken J; Brinkmann H; Adamska I
    BMC Evol Biol; 2010 Jul; 10():233. PubMed ID: 20673336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide sequence of the cox3 gene from Chondrus crispus: evidence that UGA encodes tryptophan and evolutionary implications.
    Boyen C; Leblanc C; Bonnard G; Grienenberger JM; Kloareg B
    Nucleic Acids Res; 1994 Apr; 22(8):1400-3. PubMed ID: 8190631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 5 S rRNA gene is present in the mitochondrial genome of the protist Reclinomonas americana but is absent from red algal mitochondrial DNA.
    Lang BF; Goff LJ; Gray MW
    J Mol Biol; 1996 Sep; 261(5):407-13. PubMed ID: 8800209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial gene sequences show fungal homology for Pneumocystis carinii.
    Pixley FJ; Wakefield AE; Banerji S; Hopkin JM
    Mol Microbiol; 1991 Jun; 5(6):1347-51. PubMed ID: 1664905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete sequence of the mitochondrial DNA of Chlamydomonas eugametos.
    Denovan-Wright EM; Nedelcu AM; Lee RW
    Plant Mol Biol; 1998 Jan; 36(2):285-95. PubMed ID: 9484440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The complete mitochondrial DNA sequence of Mesostigma viride identifies this green alga as the earliest green plant divergence and predicts a highly compact mitochondrial genome in the ancestor of all green plants.
    Turmel M; Otis C; Lemieux C
    Mol Biol Evol; 2002 Jan; 19(1):24-38. PubMed ID: 11752187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes.
    Rodríguez-Ezpeleta N; Brinkmann H; Burey SC; Roure B; Burger G; Löffelhardt W; Bohnert HJ; Philippe H; Lang BF
    Curr Biol; 2005 Jul; 15(14):1325-30. PubMed ID: 16051178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concerted gene recruitment in early plant evolution.
    Huang J; Gogarten JP
    Genome Biol; 2008; 9(7):R109. PubMed ID: 18611267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended.
    Nozaki H
    J Plant Res; 2005 Aug; 118(4):247-55. PubMed ID: 16032387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations affecting the mitochondrial genes encoding the cytochrome oxidase subunit I and apocytochrome b of Chlamydomonas reinhardtii.
    Colin M; Dorthu MP; Duby F; Remacle C; Dinant M; Wolwertz MR; Duyckaerts C; Sluse F; Matagne RF
    Mol Gen Genet; 1995 Nov; 249(2):179-84. PubMed ID: 7500939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.