These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 11444312)

  • 1. Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates.
    Witt U; Einig T; Yamamoto M; Kleeberg I; Deckwer WD; Müller RJ
    Chemosphere; 2001 Jul; 44(2):289-99. PubMed ID: 11444312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of aliphatic-aromatic copolyesters by Thermomonospora fusca and other thermophilic compost isolates.
    Kleeberg I; Hetz C; Kroppenstedt RM; Müller RJ; Deckwer WD
    Appl Environ Microbiol; 1998 May; 64(5):1731-5. PubMed ID: 9572944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of aliphatic homopolyesters and aliphatic-aromatic copolyesters by anaerobic microorganisms.
    Abou-Zeid DM; Müller RJ; Deckwer WD
    Biomacromolecules; 2004; 5(5):1687-97. PubMed ID: 15360276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate specificities of cutinases on aliphatic-aromatic polyesters and on their model substrates.
    Perz V; Bleymaier K; Sinkel C; Kueper U; Bonnekessel M; Ribitsch D; Guebitz GM
    N Biotechnol; 2016 Mar; 33(2):295-304. PubMed ID: 26594021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of polyesters containing aromatic constituents.
    Müller RJ; Kleeberg I; Deckwer WD
    J Biotechnol; 2001 Mar; 86(2):87-95. PubMed ID: 11245897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of a polyester degrading extracellular hydrolase from Thermomonospora fusca.
    Gouda MK; Kleeberg I; van den Heuvel J; Müller RJ; Deckwer WD
    Biotechnol Prog; 2002; 18(5):927-34. PubMed ID: 12363342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolytic and enzymatic degradation of liquid-crystalline aromatic/aliphatic copolyesters.
    Chen Y; Jia Z; Schaper A; Kristiansen M; Smith P; Wombacher R; Wendorff JH; Greiner A
    Biomacromolecules; 2004; 5(1):11-6. PubMed ID: 14715002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of aliphatic-aromatic copolyester degradation in sandy soil and its ecotoxicological impact.
    Rychter P; Kawalec M; Sobota M; Kurcok P; Kowalczuk M
    Biomacromolecules; 2010 Apr; 11(4):839-47. PubMed ID: 20187658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data on synthesis of oligomeric and polymeric poly(butylene adipate-co-butylene terephthalate) model substrates for the investigation of enzymatic hydrolysis.
    Perz V; Bleymaier K; Sinkel C; Kueper U; Bonnekessel M; Ribitsch D; Guebitz GM
    Data Brief; 2016 Jun; 7():291-8. PubMed ID: 26981550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.
    Shah AA; Kato S; Shintani N; Kamini NR; Nakajima-Kambe T
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3437-47. PubMed ID: 24522729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biobased Biodegradable Copolyesters from 2,5-Thiophenedicarboxylic Acid: Effect of Aliphatic Diols on Barrier Properties and Degradation.
    Wang Q; Li J; Wang J; Hu H; Dong Y; O'Young DL; Hu D; Zhang X; Wei DQ; Zhu J
    Biomacromolecules; 2023 Dec; 24(12):5884-5897. PubMed ID: 37956178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergy of two thermophiles enables decomposition of poly-epsilon-caprolactone under composting conditions.
    Nakasaki K; Matsuura H; Tanaka H; Sakai T
    FEMS Microbiol Ecol; 2006 Dec; 58(3):373-83. PubMed ID: 17117982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity and biodegradation of products from polyester hydrolysis.
    Kim MN; Lee BY; Lee IM; Lee HS; Yoon JS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001; 36(4):447-63. PubMed ID: 11413830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic biodegradation of aromatic-aliphatic copolyester plastic by a marine microbial consortium.
    Meyer-Cifuentes IE; Werner J; Jehmlich N; Will SE; Neumann-Schaal M; Öztürk B
    Nat Commun; 2020 Nov; 11(1):5790. PubMed ID: 33188179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus subtilis strain MZA-75.
    Shah Z; Krumholz L; Aktas DF; Hasan F; Khattak M; Shah AA
    Biodegradation; 2013 Nov; 24(6):865-77. PubMed ID: 23536219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolyzable aromatic copolyesters of p-dioxanone.
    Giammanco G; Martínez de Ilarduya A; Alla A; Muñoz-Guerra S
    Biomacromolecules; 2010 Sep; 11(9):2512-20. PubMed ID: 20684569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerated Biodegradation of Agriculture Film Based on Aromatic-Aliphatic Copolyester in Soil under Mesophilic Conditions.
    Šerá J; Stloukal P; Jančová P; Verney V; Pekařová S; Koutný M
    J Agric Food Chem; 2016 Jul; 64(28):5653-61. PubMed ID: 27367168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate and effect of monoalkyl quaternary ammonium surfactants in the aquatic environment.
    García MT; Ribosa I; Guindulain T; Sánchez-Leal J; Vives-Rego J
    Environ Pollut; 2001; 111(1):169-75. PubMed ID: 11202711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of microbial and synthetic polyesters by fungi.
    Kim DY; Rhee YH
    Appl Microbiol Biotechnol; 2003 May; 61(4):300-8. PubMed ID: 12743758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a new extracellular hydrolase from Thermobifida fusca degrading aliphatic-aromatic copolyesters.
    Kleeberg I; Welzel K; Vandenheuvel J; Müller RJ; Deckwer WD
    Biomacromolecules; 2005; 6(1):262-70. PubMed ID: 15638529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.