These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 11444314)
1. Spray deposits of crop protection products on plants--the potential exposure of non-target arthropods. Koch H; Weisser P Chemosphere; 2001 Jul; 44(2):307-12. PubMed ID: 11444314 [TBL] [Abstract][Full Text] [Related]
2. Assessment of the distribution of an insecticide applied to wheat tillers under field conditions. Deleu R; Mahaut T Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2b):851-5. PubMed ID: 12425111 [TBL] [Abstract][Full Text] [Related]
3. Quantifying pesticide deposits and spray patterns at micro-scales on apple (Malus domesticus) leaves with a view to arthropod exposure. Witton JT; Pickering MD; Alvarez T; Reed M; Weyman G; Hodson ME; Ashauer R Pest Manag Sci; 2018 Dec; 74(12):2884-2893. PubMed ID: 29999226 [TBL] [Abstract][Full Text] [Related]
4. Insecticide drift deposition on noncrop plant surfaces and its impact on two beneficial nontarget arthropods, Aphidius colemani Viereck (Hymenoptera, Braconidae) and Coccinella septempunctata L. (Coleoptera, Coccinellidae). Langhof M; Gathmann A; Poehling HM Environ Toxicol Chem; 2005 Aug; 24(8):2045-54. PubMed ID: 16152978 [TBL] [Abstract][Full Text] [Related]
5. Leaf surfaces and the bioavailability of pesticide residues. Chowdhury AB; Jepson PC; Howse PE; Ford MG Pest Manag Sci; 2001 May; 57(5):403-12. PubMed ID: 11374156 [TBL] [Abstract][Full Text] [Related]
6. Relative efficiencies of experimental and conventional foliar sprayers and assessment of optimal LWA spray volumes in trellised wine grapes. Gil E; Salcedo R; Soler A; Ortega P; Llop J; Campos J; Oliva J Pest Manag Sci; 2021 May; 77(5):2462-2476. PubMed ID: 33442942 [TBL] [Abstract][Full Text] [Related]
7. The efficacy of a petroleum spray oil against Aphis gossypii Glover on cotton. Part 2: indirect effects of oil deposits. Najar-Rodríguez AJ; Walter GH; Mensah RK Pest Manag Sci; 2007 Jun; 63(6):596-607. PubMed ID: 17469081 [TBL] [Abstract][Full Text] [Related]
8. Variability in initial spray deposit in apple trees in space and time. Xu X; Wu P; Thorbek P; Hyder K Pest Manag Sci; 2006 Oct; 62(10):947-56. PubMed ID: 16847820 [TBL] [Abstract][Full Text] [Related]
9. Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model. Stainier C; Destain MF; Schiffers B; Lebeau F Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):197-200. PubMed ID: 17390793 [TBL] [Abstract][Full Text] [Related]
10. Bats at risk? Bat activity and insecticide residue analysis of food items in an apple orchard. Stahlschmidt P; Brühl CA Environ Toxicol Chem; 2012 Jul; 31(7):1556-63. PubMed ID: 22505289 [TBL] [Abstract][Full Text] [Related]
11. Pyrethrins and piperonyl butoxide residues on potato leaves and in soil under field conditions. Antonious GF; Snyder JC; Patel GA J Environ Sci Health B; 2001 May; 36(3):261-71. PubMed ID: 11411850 [TBL] [Abstract][Full Text] [Related]
12. Field experiment on spray drift: deposition and airborne drift during application to a winter wheat crop. Wolters A; Linnemann V; van de Zande JC; Vereecken H Sci Total Environ; 2008 Nov; 405(1-3):269-77. PubMed ID: 18723207 [TBL] [Abstract][Full Text] [Related]
13. Pesticide residues in some herbs growing in agricultural areas in Poland. Malinowska E; Jankowski K Environ Monit Assess; 2015 Dec; 187(12):775. PubMed ID: 26612566 [TBL] [Abstract][Full Text] [Related]
14. Plant protection product dose rate estimation in apple orchards using a fuzzy logic system. Berk P; Stajnko D; Hočevar M; Malneršič A; Jejčič V; Belšak A PLoS One; 2019; 14(4):e0214315. PubMed ID: 31017938 [TBL] [Abstract][Full Text] [Related]
15. Contamination of wild plants near neonicotinoid seed-treated crops, and implications for non-target insects. Botías C; David A; Hill EM; Goulson D Sci Total Environ; 2016 Oct; 566-567():269-278. PubMed ID: 27220104 [TBL] [Abstract][Full Text] [Related]
16. The effect of different spray liquids on the foliar retention of agricultural sprays by wheat plants in a canopy. Butler Ellis MC; Webb DA; Western NM Pest Manag Sci; 2004 Aug; 60(8):786-94. PubMed ID: 15307670 [TBL] [Abstract][Full Text] [Related]
17. COMPUTER SIMULATIONS OF SPRAY RETENTION BY A 3D BARLEY PLANT: EFFECT OF FORMULATION SURFACE TENSION. Massinon M; De Cock N; Salah SO; Lebeau F Commun Agric Appl Biol Sci; 2015; 80(3):313-21. PubMed ID: 27141729 [TBL] [Abstract][Full Text] [Related]
18. Dislodgeability of chlorpyrifos and fluorescent tracer residues on turf: comparison of wipe and foliar wash sampling techniques. Black KG; Fenske RA Arch Environ Contam Toxicol; 1996 Nov; 31(4):563-70. PubMed ID: 8975830 [TBL] [Abstract][Full Text] [Related]
19. Development, validation and application of a sensitive analytical method for residue determination and dissipation of imidacloprid in sugarcane under tropical field condition. Ramasubramanian T; Paramasivam M; Nirmala R Environ Monit Assess; 2016 Jun; 188(6):375. PubMed ID: 27230427 [TBL] [Abstract][Full Text] [Related]
20. Wind tunnel studies on spray deposition on leaves of tree species used for windbreaks and exposure of honey bees. Ucar T; Hall FR; Tew JE; Hacker JK Pest Manag Sci; 2003 Mar; 59(3):358-64. PubMed ID: 12639055 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]