These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11444544)

  • 1. Analytical solutions for time-resolved fluorescence lifetime imaging in a turbid medium such as tissue.
    Hattery D; Chernomordik V; Loew M; Gannot I; Gandjbakhche A
    J Opt Soc Am A Opt Image Sci Vis; 2001 Jul; 18(7):1523-30. PubMed ID: 11444544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional optical detection based on pH dependent fluorescence lifetime.
    Gannot I; Ron I; Hekmat F; Chernomordik V; Gandjbakhche A
    Lasers Surg Med; 2004; 35(5):342-8. PubMed ID: 15611954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative fluorescence spectroscopy in turbid media: a practical solution to the problem of scattering and absorption.
    Chen Y; Chen ZP; Yang J; Jin JW; Zhang J; Yu RQ
    Anal Chem; 2013 Feb; 85(4):2015-20. PubMed ID: 23327605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical models for time resolved fluorescence spectroscopy in tissues.
    Sadoqi M; Riseborough P; Kumar S
    Phys Med Biol; 2001 Oct; 46(10):2725-43. PubMed ID: 11686285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods.
    Vishwanath K; Pogue B; Mycek MA
    Phys Med Biol; 2002 Sep; 47(18):3387-405. PubMed ID: 12375827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media.
    Liebert A; Wabnitz H; Zołek N; Macdonald R
    Opt Express; 2008 Aug; 16(17):13188-202. PubMed ID: 18711557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A CTRW-based model of time-resolved fluorescence lifetime imaging in a turbid medium.
    Chernomordik V; Gandjbakhche AH; Hassan M; Pajevic S; Weiss GH
    Opt Commun; 2010 Dec; 283(23):4832-4839. PubMed ID: 21057657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence optical diffusion tomography.
    Milstein AB; Oh S; Webb KJ; Bouman CA; Zhang Q; Boas DA; Millane RP
    Appl Opt; 2003 Jun; 42(16):3081-94. PubMed ID: 12790460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration.
    Mayer RH; Reynolds JS; Sevick-Muraca EM
    Appl Opt; 1999 Aug; 38(22):4930-8. PubMed ID: 18323983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency-domain lifetime measurements and sensing in highly scattering media.
    Szmackinski H; Lakowicz JR
    Sens Actuators B Chem; 1996 Jan; 30(3):207-215. PubMed ID: 34100577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications.
    Li XD; O'Leary MA; Boas DA; Chance B; Yodh AG
    Appl Opt; 1996 Jul; 35(19):3746-58. PubMed ID: 21102772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mean time-of-flight of photons in transillumination measurements of optically anisotropic tissue with an inclusion.
    Dudko OK; Weiss GH; Chernomordik V
    Phys Med Biol; 2006 Sep; 51(18):4719-33. PubMed ID: 16953052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection limit enhancement of fluorescent heterogeneities in turbid media by dual-interfering excitation.
    Intes X; Chen Y; Li X; Chance B
    Appl Opt; 2002 Jul; 41(19):3999-4007. PubMed ID: 12099611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications.
    Boas DA; O'Leary MA; Chance B; Yodh AG
    Proc Natl Acad Sci U S A; 1994 May; 91(11):4887-91. PubMed ID: 8197151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescent heterogeneities in turbid media: limits for detection, characterization, and comparison with absorption.
    Li X; Chance B; Yodh AG
    Appl Opt; 1998 Oct; 37(28):6833-44. PubMed ID: 18301500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence lifetime-based sensing in tissues: a computational study.
    Hutchinson CL; Lakowicz JR; Sevick-Muraca EM
    Biophys J; 1995 Apr; 68(4):1574-82. PubMed ID: 7787043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach.
    Biswal N; Gupta S; Ghosh N; Pradhan A
    Opt Express; 2003 Dec; 11(24):3320-31. PubMed ID: 19471461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved subtraction method for measuring optical properties of turbid media.
    Milej D; Abdalmalak A; Janusek D; Diop M; Liebert A; St Lawrence K
    Appl Opt; 2016 Mar; 55(7):1507-13. PubMed ID: 26974605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relation between fluorescence spectra of dilute and turbid samples.
    Durkin AJ; Jaikumar S; Ramanujam N; Richards-Kortum R
    Appl Opt; 1994 Jan; 33(3):414-23. PubMed ID: 20862033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear Behavior of the Autofluorescence Intensity on the Surface of Light-Scattering Biotissues and its Theoretical Proof.
    Rogatkin D; Guseva I; Lapaeva L
    J Fluoresc; 2015 Jul; 25(4):917-24. PubMed ID: 25903160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.