These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11444570)

  • 1. Photorefractive beam-fanning effect and self-pulsations in coated LiNbO3 slabs.
    Zartov G; Tenev T; Panajotov K; Popov E; Peyeva R; Thienpont H; Veretennicoff I
    J Opt Soc Am A Opt Image Sci Vis; 2001 Jul; 18(7):1741-7. PubMed ID: 11444570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single beam one-way imaging through a thick dynamic turbulent medium.
    Yau HF; Liu JP; Lee HY; Chen YZ
    Appl Opt; 2006 Jul; 45(19):4625-30. PubMed ID: 16799675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-beam recording in a LiNbO3 crystal.
    Liu JP; Lee HY; Yau HF; Chen YZ; Chang CC; Sun CC
    Opt Lett; 2005 Feb; 30(3):305-7. PubMed ID: 15751893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal evolution of fanning in photorefractive materials.
    Segev M; Engin D; Yariv A; Valley GC
    Opt Lett; 1993 Jun; 18(12):956-8. PubMed ID: 19823257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Operable conditions of the beam-fanning novelty filter for the c axis and the incident angle.
    Yoshida T; Okamoto A; Takayama Y; Sato K
    Appl Opt; 2000 Nov; 39(32):5940-8. PubMed ID: 18354598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and experimental studies of hologram multiplexing that uses a random wave front generated by photorefractive beam fanning.
    Bunsen M; Okamoto A
    Appl Opt; 2005 Mar; 44(8):1454-63. PubMed ID: 15796245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fanning effects in photorefractive crystals.
    Hong YH; Xie P; Dai JH; Zhu Y; Yang HG; Zhang HJ
    Opt Lett; 1993 May; 18(10):772-4. PubMed ID: 19802268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro Fabry-PĂ©rot Interferometer at Rayleigh Range.
    Tsujiie Y; Kawamura Y
    Sci Rep; 2018 Oct; 8(1):15193. PubMed ID: 30315200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incoherent-to-Coherent Conversion by Use of the Photorefractive Beam-Fanning Effect and Amplification by Two-Wave Coupling in a Photorefractive Ba(1-x)Sr(x)TiO(3) Crystal.
    Qiu Y; Zheng Z; Lu T; Huang W; Zhuang J; Tang DY
    Appl Opt; 2001 Feb; 40(5):687-90. PubMed ID: 18357048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal switching from recording to fixing for high diffraction from a LiNbO3:Ce:Cu photorefractive nonvolatile hologram.
    Ren L; Liu L; Liu D; Zu J; Luan Z
    Opt Lett; 2004 Jan; 29(2):186-8. PubMed ID: 14744005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin and elimination of dynamic instability in a self-pumped phase-conjugate mirror.
    Zheng Y; Sasaki A; Gao X; Aoyama H
    Opt Lett; 1995 Feb; 20(3):267-9. PubMed ID: 19859156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deterministic beam fanning in Fe-doped stoichiometric lithium niobate crystals.
    Solanki S; Xu X; Chong TC
    Appl Opt; 2005 Aug; 44(23):4922-9. PubMed ID: 16114530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal evolution of beam fanning in LiNbO(3):Fe, In crystals.
    Zhang X; Xu J; Liu S; Huang H; Wolfsberger J; Chen X; Zhang G
    Appl Opt; 2001 Feb; 40(5):683-6. PubMed ID: 18357047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incoherent-to-coherent conversion by use of the photorefractive fanning effect.
    Zhang J; Wang H; Yoshikado S; Aruga T
    Opt Lett; 1997 Nov; 22(21):1612-4. PubMed ID: 18188313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of composition on the photorefractive centers in pure LiNbO3 at low light intensity.
    Yan W; Kong Y; Shi L; Sun L; Liu H; Li X; Zhao D; Xu J; Chen S; Zhang L; Huang Z; Liu S; Zhang G
    Appl Opt; 2006 Apr; 45(11):2453-8. PubMed ID: 16623242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution incoherent-to-coherent conversion by use of the photorefractive fanning effect.
    Zhang J; Wang H; Yoshikado S; Aruga T
    Appl Opt; 1999 Feb; 38(6):995-1000. PubMed ID: 18305705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Airy beam self-focusing in a photorefractive medium.
    Wiersma N; Marsal N; Sciamanna M; Wolfersberger D
    Sci Rep; 2016 Oct; 6():35078. PubMed ID: 27731356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image transmission through a thick dynamic distorter by the photorefractive fanning effect.
    Zhang J; Wang H; Yoshikado S; Aruga T
    Opt Lett; 1998 Apr; 23(8):585-7. PubMed ID: 18084584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of recording conditions on crossed-beam photorefractive gratings in doubly doped LiNbO3 crystals.
    Wang X; Yan A; Liu L; Liu D; Zhi Y; Hu Z
    Appl Opt; 2006 Aug; 45(23):5942-9. PubMed ID: 16926882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow light with photorefractive beam fanning.
    Bouldja N; Sciamanna M; Wolfersberger D
    Opt Express; 2020 Feb; 28(4):5860-5865. PubMed ID: 32121800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.