These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 1144460)

  • 1. Rates of oxygen uptake by embryonic anterior horn tissue isolated at various developmental stages.
    Fisher KR; Hertz L
    Proc Soc Exp Biol Med; 1975 Jul; 149(3):702-6. PubMed ID: 1144460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of specific populations of interneurons in the ventral horn of the embryonic chick lumbosacral spinal cord.
    Antal M; Polgár E; Berki A; Birinyi A; Puskár Z
    Eur J Morphol; 1994 Aug; 32(2-4):201-6. PubMed ID: 7803167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A monoclonal antibody distinguishes anterior horn cells of human embryonic spinal cord during a transient period of development.
    Erkman L; Mattenberger L; Kato AC
    Brain Res Dev Brain Res; 1992 Mar; 66(1):109-17. PubMed ID: 1376219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct development of GABA system in the ventral and dorsal horns in the embryonic mouse spinal cord.
    Kosaka Y; Kin H; Tatetsu M; Uema I; Takayama C
    Brain Res; 2012 Nov; 1486():39-52. PubMed ID: 23044470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of calbindin-D28k immunoreactive neurons in the embryonic chick lumbosacral spinal cord.
    Antal M; Polgár E
    Eur J Neurosci; 1993 Jul; 5(7):782-94. PubMed ID: 8281290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and culture of motoneurons from embryonic chicken spinal cords.
    Masuko S; Kuromi H; Shimada Y
    Proc Natl Acad Sci U S A; 1979 Jul; 76(7):3537-41. PubMed ID: 291021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ERG conductance expression modulates the excitability of ventral horn GABAergic interneurons that control rhythmic oscillations in the developing mouse spinal cord.
    Furlan F; Taccola G; Grandolfo M; Guasti L; Arcangeli A; Nistri A; Ballerini L
    J Neurosci; 2007 Jan; 27(4):919-28. PubMed ID: 17251434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental expression of glycine immunoreactivity and its colocalization with GABA in the embryonic chick lumbosacral spinal cord.
    Berki AC; O'Donovan MJ; Antal M
    J Comp Neurol; 1995 Nov; 362(4):583-96. PubMed ID: 8636469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of calcitonin gene-related peptide in anterior and posterior horns of the spinal cord after brachial plexus injury.
    Chen LJ; Zhang FG; Li J; Song HX; Zhou LB; Yao BC; Li F; Li WC
    J Clin Neurosci; 2010 Jan; 17(1):87-91. PubMed ID: 19969463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural correlates of embryonic motility in the chick.
    Ripley KL; Provine RR
    Brain Res; 1972 Oct; 45(1):127-34. PubMed ID: 5075332
    [No Abstract]   [Full Text] [Related]  

  • 11. SMN, the product of the spinal muscular atrophy-determining gene, is expressed widely but selectively in the developing human forebrain.
    Briese M; Richter DU; Sattelle DB; Ulfig N
    J Comp Neurol; 2006 Aug; 497(5):808-16. PubMed ID: 16786553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Antidromic action potentials in the spinal cord motor neurons of the chick embryo].
    Veluman AA
    Neirofiziologiia; 1985; 17(1):70-7. PubMed ID: 3974762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructural study of motoneurons in Werdnig-Hoffmann disease.
    Fidziańska A; Rafałowska J; Glinka Z
    Clin Neuropathol; 1984; 3(6):260-5. PubMed ID: 6518687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of motor neurons of the levator ani muscle in fetal rats with spina bifida occulta.
    Li Y; Hou XY; Yuan ZW; Wang WL
    Surg Neurol; 2009 Dec; 72(6):652-6; discussion 656. PubMed ID: 19328533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of peripheral contacts on the activity of acid phosphatase of developing chicken spinal cord anterior horn cells.
    van Welsum RA; Hones KF; Drukker J; Houthoff HJ
    Cell Mol Biol Incl Cyto Enzymol; 1980; 26(3):281-5. PubMed ID: 7459934
    [No Abstract]   [Full Text] [Related]  

  • 16. Distinct subpopulations of sensory afferents require F11 or axonin-1 for growth to their target layers within the spinal cord of the chick.
    Perrin FE; Rathjen FG; Stoeckli ET
    Neuron; 2001 Jun; 30(3):707-23. PubMed ID: 11430805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early differentiation of motor neuroblasts in the chick embryo as studied by electron microscopy. II. Microtubules and neurofilaments.
    Lyser KM
    Dev Biol; 1968 Feb; 17(2):117-42. PubMed ID: 5637101
    [No Abstract]   [Full Text] [Related]  

  • 18. Evx1 is a postmitotic determinant of v0 interneuron identity in the spinal cord.
    Moran-Rivard L; Kagawa T; Saueressig H; Gross MK; Burrill J; Goulding M
    Neuron; 2001 Feb; 29(2):385-99. PubMed ID: 11239430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunohistochemical and hodological characterization of calbindin-D28k-containing neurons in the spinal cord of the turtle, Pseudemys scripta elegans.
    Morona R; López JM; Domínguez L; González A
    Microsc Res Tech; 2007 Feb; 70(2):101-18. PubMed ID: 17203484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell death of motoneurons in the chick embryo spinal cord. IX. The loss of motoneurons following removal of afferent inputs.
    Okado N; Oppenheim RW
    J Neurosci; 1984 Jun; 4(6):1639-52. PubMed ID: 6726350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.