BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11444797)

  • 1. Expression and activities of aldo-keto oxidoreductases in Alzheimer disease.
    Picklo MJ; Olson SJ; Markesbery WR; Montine TJ
    J Neuropathol Exp Neurol; 2001 Jul; 60(7):686-95. PubMed ID: 11444797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of 4-hydroxynonenal by rat Kupffer cells.
    Luckey SW; Petersen DR
    Arch Biochem Biophys; 2001 May; 389(1):77-83. PubMed ID: 11370675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elevation of AKR7A2 (succinic semialdehyde reductase) in neurodegenerative disease.
    Picklo MJ; Olson SJ; Hayes JD; Markesbery WR; Montine TJ
    Brain Res; 2001 Oct; 916(1-2):229-38. PubMed ID: 11597610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid peroxidation product, 4-hydroxynonenal and its conjugate with GSH are excellent substrates of bovine lens aldose reductase.
    Srivastava S; Chandra A; Bhatnagar A; Srivastava SK; Ansari NH
    Biochem Biophys Res Commun; 1995 Dec; 217(3):741-6. PubMed ID: 8554593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of aldehyde metabolizing enzymes in mediating effects of aldehyde products of lipid peroxidation in liver cells.
    Canuto RA; Ferro M; Muzio G; Bassi AM; Leonarduzzi G; Maggiora M; Adamo D; Poli G; Lindahl R
    Carcinogenesis; 1994 Jul; 15(7):1359-64. PubMed ID: 8033312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative modification of lipoic acid by HNE in Alzheimer disease brain.
    Hardas SS; Sultana R; Clark AM; Beckett TL; Szweda LI; Murphy MP; Butterfield DA
    Redox Biol; 2013; 1(1):80-5. PubMed ID: 24024140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of cardiac oxidoreductase(s) involved in the metabolism of the lipid peroxidation-derived aldehyde-4-hydroxynonenal.
    Srivastava S; Chandra A; Ansari NH; Srivastava SK; Bhatnagar A
    Biochem J; 1998 Feb; 329 ( Pt 3)(Pt 3):469-75. PubMed ID: 9445372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic studies of FR-1, a growth factor-inducible aldo-keto reductase.
    Srivastava S; Harter TM; Chandra A; Bhatnagar A; Srivastava SK; Petrash JM
    Biochemistry; 1998 Sep; 37(37):12909-17. PubMed ID: 9737870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Major differences exist in the function and tissue-specific expression of human aflatoxin B1 aldehyde reductase and the principal human aldo-keto reductase AKR1 family members.
    O'connor T; Ireland LS; Harrison DJ; Hayes JD
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):487-504. PubMed ID: 10510318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A spontaneously immortalized Schwann cell line from aldose reductase-deficient mice as a useful tool for studying polyol pathway and aldehyde metabolism.
    Niimi N; Yako H; Takaku S; Kato H; Matsumoto T; Nishito Y; Watabe K; Ogasawara S; Mizukami H; Yagihashi S; Chung SK; Sango K
    J Neurochem; 2018 Mar; 144(6):710-722. PubMed ID: 29238976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Activity of endogenous aldehydes catabolism enzymes in subcellular fractions of liver, heart and brain of rats at pubertal age under stress].
    Sukhova LL; Gur'eva AV; Berezhnaia EA; Davydov VV
    Biomed Khim; 2012; 58(6):691-701. PubMed ID: 23350201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Aldh2 (-/-) mice as an age-related model of cognitive impairment and Alzheimer's disease.
    D'Souza Y; Elharram A; Soon-Shiong R; Andrew RD; Bennett BM
    Mol Brain; 2015 Apr; 8():27. PubMed ID: 25910195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative and reductive metabolism of lipid-peroxidation derived carbonyls.
    Singh M; Kapoor A; Bhatnagar A
    Chem Biol Interact; 2015 Jun; 234():261-73. PubMed ID: 25559856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association of Impaired Reactive Aldehyde Metabolism with Delayed Graft Function in Human Kidney Transplantation.
    Wijermars LGM; Schaapherder AF; George T; Sinharoy P; Gross ER
    Oxid Med Cell Longev; 2018; 2018():3704129. PubMed ID: 30671169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative contribution of human erythrocyte aldehyde dehydrogenase to the systemic detoxification of the oxazaphosphorines.
    Dockham PA; Sreerama L; Sladek NE
    Drug Metab Dispos; 1997 Dec; 25(12):1436-41. PubMed ID: 9394035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The hepatocellular metabolism of 4-hydroxynonenal by alcohol dehydrogenase, aldehyde dehydrogenase, and glutathione S-transferase.
    Hartley DP; Ruth JA; Petersen DR
    Arch Biochem Biophys; 1995 Jan; 316(1):197-205. PubMed ID: 7840616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymology and molecular biology of carbonyl metabolism. Aldehyde dehydrogenase, aldo-keto reductase, and alcohol dehydrogenase. Proceedings of an international workshop. Espoo, Finland, June 14-16, 1986.
    Prog Clin Biol Res; 1987; 232():1-447. PubMed ID: 3112781
    [No Abstract]   [Full Text] [Related]  

  • 18. Detoxification of reactive aldehydes in mitochondria: effects of age and dietary restriction.
    Chen JJ; Yu BP
    Aging (Milano); 1996 Oct; 8(5):334-40. PubMed ID: 8959235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aldo-keto reductases mediate constitutive and inducible protection against aldehyde toxicity in human neuroblastoma SH-SY5Y cells.
    Lyon RC; Li D; McGarvie G; Ellis EM
    Neurochem Int; 2013 Jan; 62(1):113-21. PubMed ID: 23084985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased activity of mitochondrial aldehyde dehydrogenase (ALDH) in the putamen of individuals with Alzheimer's disease: a human postmortem study.
    Michel TM; Gsell W; Käsbauer L; Tatschner T; Sheldrick AJ; Neuner I; Schneider F; Grünblatt E; Riederer P
    J Alzheimers Dis; 2010; 19(4):1295-301. PubMed ID: 20061610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.