These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 11444941)

  • 81. Comparison of methyl rotation axis order parameters derived from model-free analyses of (2)H and (13)C longitudinal and transverse relaxation rates measured in the same protein sample.
    Ishima R; Petkova AP; Louis JM; Torchia DA
    J Am Chem Soc; 2001 Jun; 123(25):6164-71. PubMed ID: 11414851
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Dipolar interactions in molecules aligned by strong AC electric fields.
    Peshkovsky A; McDermott AE
    J Magn Reson; 2000 Nov; 147(1):104-9. PubMed ID: 11042052
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Helical Polyisocyanopeptides as Lyotropic Liquid Crystals for Measuring Residual Dipolar Couplings.
    Li GW; Cao JM; Zong W; Hu L; Hu ML; Lei X; Sun H; Tan RX
    Chemistry; 2017 Jun; 23(32):7653-7656. PubMed ID: 28382647
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Refined structure of a flexible heptasaccharide using 1H-13C and 1H-1H NMR residual dipolar couplings in concert with NOE and long range scalar coupling constants.
    Martin-Pastor M; Bush CA
    J Biomol NMR; 2001 Feb; 19(2):125-39. PubMed ID: 11256809
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A set of HA-detected experiments for measuring scalar and residual dipolar couplings.
    Würtz P; Fredriksson K; Permi P
    J Biomol NMR; 2005 Apr; 31(4):321-30. PubMed ID: 15928998
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Refinement of d(GCGAAGC) hairpin structure using one- and two-bond residual dipolar couplings.
    Padrta P; Stefl R; Králík L; Zídek L; Sklenár V
    J Biomol NMR; 2002 Sep; 24(1):1-14. PubMed ID: 12449414
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Site-specific protein methyl deuterium quadrupolar patterns by proton-detected 3D
    Akbey Ü
    J Biomol NMR; 2022 Apr; 76(1-2):23-28. PubMed ID: 34997409
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Perspectives in the application of residual dipolar couplings in the structure elucidation of weakly aligned small molecules.
    Schmidts V
    Magn Reson Chem; 2017 Jan; 55(1):54-60. PubMed ID: 27743456
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Characterization of polyacrylamide-stabilized Pfl phage liquid crystals for protein NMR spectroscopy.
    Trempe JF; Morin FG; Xia Z; Marchessault RH; Gehring K
    J Biomol NMR; 2002 Jan; 22(1):83-7. PubMed ID: 11885983
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Measurement of long-range 1H-1H dipolar couplings in weakly aligned proteins.
    Wu Z; Bax A
    J Am Chem Soc; 2002 Aug; 124(33):9672-3. PubMed ID: 12175202
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Orientational ordering and dynamics of the hydrate and exchangeable hydrogen atoms in crystalline crambin.
    Usha MG; Wittebort RJ
    J Mol Biol; 1989 Aug; 208(4):669-78. PubMed ID: 2810359
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Deuterium Residual Quadrupolar Couplings: Crossing the Current Frontiers in the Relative Configuration Analysis of Natural Products.
    Lesot P; Gil RR; Berdagué P; Navarro-Vázquez A
    J Nat Prod; 2020 Oct; 83(10):3141-3148. PubMed ID: 32970418
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Multiplet component separation for measurement of methyl 13C-1H dipolar couplings in weakly aligned proteins.
    Kontaxis G; Bax A
    J Biomol NMR; 2001 May; 20(1):77-82. PubMed ID: 11430758
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Structural monitoring of oligosaccharides through 13C enrichment and NMR observation of acetyl groups.
    Yu F; Prestegard JH
    Biophys J; 2006 Sep; 91(5):1952-9. PubMed ID: 16782783
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Optimal excitation of (23)Na nuclear spins in the presence of residual quadrupolar coupling and quadrupolar relaxation.
    Lee JS; Regatte RR; Jerschow A
    J Chem Phys; 2009 Nov; 131(17):174501. PubMed ID: 19895019
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Residual dipolar couplings as new conformational restraints in isotropically 13C-enriched oligosaccharides.
    Kiddle GR; Homans SW
    FEBS Lett; 1998 Sep; 436(1):128-30. PubMed ID: 9771907
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Flagella as a novel alignment medium for the measurement of residual dipolar couplings in proteins.
    Singh H; Shukla M; Rao BJ; Chary KV
    Chem Commun (Camb); 2013 Dec; 49(97):11403-5. PubMed ID: 24165953
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Characterization of the cholesteric phase of filamentous bacteriophage fd for molecular alignment.
    Barrientos LG; Louis JM; Gronenborn AM
    J Magn Reson; 2001 Mar; 149(1):154-8. PubMed ID: 11273766
    [TBL] [Abstract][Full Text] [Related]  

  • 99. DL-apiose substituted with stable isotopes: synthesis, n.m.r.-spectral analysis, and furanose anomerization.
    Snyder JR; Serianni AS
    Carbohydr Res; 1987 Aug; 166(1):85-99. PubMed ID: 3308088
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Experimental assessment of the vibration-reorientation contribution to liquid crystal NMR dipolar couplings: the case of tetramethylallene dissolved in a nematic mesophase.
    Celebre G; De Luca G; Di Pietro ME
    J Phys Chem B; 2011 Sep; 115(38):11119-26. PubMed ID: 21879737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.