These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 11445075)
1. Exploring the active site of yeast xylose reductase by site-directed mutagenesis of sequence motifs characteristic of two dehydrogenase/reductase family types. Klimacek M; Szekely M; Griessler R; Nidetzky B FEBS Lett; 2001 Jul; 500(3):149-52. PubMed ID: 11445075 [TBL] [Abstract][Full Text] [Related]
2. Electrostatic stabilization in a pre-organized polar active site: the catalytic role of Lys-80 in Candida tenuis xylose reductase (AKR2B5) probed by site-directed mutagenesis and functional complementation studies. Kratzer R; Nidetzky B Biochem J; 2005 Jul; 389(Pt 2):507-15. PubMed ID: 15799715 [TBL] [Abstract][Full Text] [Related]
3. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant. Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252 [TBL] [Abstract][Full Text] [Related]
4. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Petschacher B; Leitgeb S; Kavanagh KL; Wilson DK; Nidetzky B Biochem J; 2005 Jan; 385(Pt 1):75-83. PubMed ID: 15320875 [TBL] [Abstract][Full Text] [Related]
5. Catalytic mechanism and substrate selectivity of aldo-keto reductases: insights from structure-function studies of Candida tenuis xylose reductase. Kratzer R; Wilson DK; Nidetzky B IUBMB Life; 2006 Sep; 58(9):499-507. PubMed ID: 17002977 [TBL] [Abstract][Full Text] [Related]
6. The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis. Kavanagh KL; Klimacek M; Nidetzky B; Wilson DK Biochemistry; 2002 Jul; 41(28):8785-95. PubMed ID: 12102621 [TBL] [Abstract][Full Text] [Related]
7. Probing the substrate binding site of Candida tenuis xylose reductase (AKR2B5) with site-directed mutagenesis. Kratzer R; Leitgeb S; Wilson DK; Nidetzky B Biochem J; 2006 Jan; 393(Pt 1):51-8. PubMed ID: 16336198 [TBL] [Abstract][Full Text] [Related]
8. Altering dimer contacts in xylose reductase from Candida tenuis by site-directed mutagenesis: structural and functional properties of R180A mutant. Klimacek M; Wührer F; Kavanagh KL; Wilson DK; Nidetzky B Chem Biol Interact; 2003 Feb; 143-144():523-32. PubMed ID: 12604238 [TBL] [Abstract][Full Text] [Related]
9. Structural and functional properties of aldose xylose reductase from the D-xylose-metabolizing yeast Candida tenuis. Nidetzky B; Mayr P; Neuhauser W; Puchberger M Chem Biol Interact; 2001 Jan; 130-132(1-3):583-95. PubMed ID: 11306077 [TBL] [Abstract][Full Text] [Related]
10. Catalytic reaction profile for NADH-dependent reduction of aromatic aldehydes by xylose reductase from Candida tenuis. Mayr P; Nidetzky B Biochem J; 2002 Sep; 366(Pt 3):889-99. PubMed ID: 12003638 [TBL] [Abstract][Full Text] [Related]
11. Identification of lysine-78 as an essential residue in the Saccharomyces cerevisiae xylose reductase. Jeong EY; Kim IS; Lee H FEMS Microbiol Lett; 2002 Apr; 209(2):223-8. PubMed ID: 12007809 [TBL] [Abstract][Full Text] [Related]
12. Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine. Schlegel BP; Ratnam K; Penning TM Biochemistry; 1998 Aug; 37(31):11003-11. PubMed ID: 9692994 [TBL] [Abstract][Full Text] [Related]
13. Tyr-51 is the proton donor-acceptor for NAD(H)-dependent interconversion of xylose and xylitol by Candida tenuis xylose reductase (AKR2B5). Pival SL; Klimacek M; Kratzer R; Nidetzky B FEBS Lett; 2008 Dec; 582(29):4095-9. PubMed ID: 19026644 [TBL] [Abstract][Full Text] [Related]
14. Investigation of the role of a conserved glycine motif in the Saccharomyces cerevisiae xylose reductase. Chu BC; Lee H Curr Microbiol; 2006 Aug; 53(2):118-23. PubMed ID: 16802208 [TBL] [Abstract][Full Text] [Related]
15. Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis. Nidetzky B; Klimacek M; Mayr P Biochemistry; 2001 Aug; 40(34):10371-81. PubMed ID: 11513616 [TBL] [Abstract][Full Text] [Related]
16. Mutagenesis of 3 alpha-hydroxysteroid dehydrogenase reveals a "push-pull" mechanism for proton transfer in aldo-keto reductases. Schlegel BP; Jez JM; Penning TM Biochemistry; 1998 Mar; 37(10):3538-48. PubMed ID: 9521675 [TBL] [Abstract][Full Text] [Related]
17. Involvement of two basic residues (Lys-17 and Arg-39) of mouse lung carbonyl reductase in NADP(H)-binding and fatty acid activation: site-directed mutagenesis and kinetic analyses. Nakanishi M; Kakumoto M; Matsuura K; Deyashiki Y; Tanaka N; Nonaka T; Mitsui Y; Hara A J Biochem; 1996 Aug; 120(2):257-63. PubMed ID: 8889808 [TBL] [Abstract][Full Text] [Related]
18. The catalytic mechanism of NADH-dependent reduction of 9,10-phenanthrenequinone by Candida tenuis xylose reductase reveals plasticity in an aldo-keto reductase active site. Pival SL; Klimacek M; Nidetzky B Biochem J; 2009 Jun; 421(1):43-9. PubMed ID: 19368528 [TBL] [Abstract][Full Text] [Related]
19. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Krahulec S; Klimacek M; Nidetzky B Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479 [TBL] [Abstract][Full Text] [Related]
20. Mutational study of the role of tyrosine-49 in the Saccharomyces cerevisiae xylose reductase. Jeong EY; Sopher C; Kim IS; Lee H Yeast; 2001 Aug; 18(11):1081-9. PubMed ID: 11481678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]