BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 11445311)

  • 1. Flow, diffusion, and thermal convection in percolation clusters: NMR experiments and numerical FEM/FVM simulations.
    Kimmich R; Klemm A; Weber M
    Magn Reson Imaging; 2001; 19(3-4):353-61. PubMed ID: 11445311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow through percolation clusters: NMR velocity mapping and numerical simulation study.
    Klemm A; Kimmich R; Weber M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 1):041514. PubMed ID: 11308855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rayleigh-Bénard percolation transition of thermal convection in porous media: computational fluid dynamics, NMR velocity mapping, NMR temperature mapping.
    Weber M; Kimmich R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056301. PubMed ID: 12513590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion on random-site percolation clusters: theory and NMR microscopy experiments with model objects.
    Klemm A; Metzler R; Kimmich R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021112. PubMed ID: 11863508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Six-dimensional spin density/velocity NMR microscopy of percolation clusters.
    Müller HP; Kimmich R; Weis J
    Magn Reson Imaging; 1996; 14(7-8):955-8. PubMed ID: 8970121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rayleigh-Bénard percolation transition study of thermal convection in porous media: numerical simulation and NMR experiments.
    Weber M; Klemm A; Kimmich R
    Phys Rev Lett; 2001 May; 86(19):4302-5. PubMed ID: 11328160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maps of electric current density and hydrodynamic flow in porous media: NMR experiments and numerical simulations.
    Weber M; Kimmich R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026306. PubMed ID: 12241284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cluster size distribution in percolation theory and fractal Cantor dust.
    Grinchuk P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041118. PubMed ID: 17500876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Percolation transition in supercritical water: a Monte Carlo simulation study.
    Pártay LB; Jedlovszky P; Brovchenko I; Oleinikova A
    J Phys Chem B; 2007 Jul; 111(26):7603-9. PubMed ID: 17567064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of transport: NMR microscopy experiments with model objects for porous media with pore sizes down to 50 microm.
    Kossel E; Weber M; Kimmich R
    Solid State Nucl Magn Reson; 2004 Jan; 25(1-3):28-34. PubMed ID: 14698381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loop-erased random walk on a percolation cluster: crossover from Euclidean to fractal geometry.
    Daryaei E; Rouhani S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062101. PubMed ID: 25019719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Invasion percolation between two sites.
    Araújo AD; Vasconcelos TF; Moreira AA; Lucena LS; Andrade JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041404. PubMed ID: 16383378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR imaging of thermal convection patterns.
    Weis J; Kimmich R; Müller HP
    Magn Reson Imaging; 1996; 14(3):319-27. PubMed ID: 8725197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loewner driving functions for off-critical percolation clusters.
    Kondo Y; Mitarai N; Nakanishi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):050102. PubMed ID: 20364936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of aqueous transport in rigid porous matrices near the percolation threshold.
    Ellis SR; Wright JL
    Pharm Res; 2006 Oct; 23(10):2441-53. PubMed ID: 16933095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometry controlled anomalous diffusion in random fractal geometries: looking beyond the infinite cluster.
    Mardoukhi Y; Jeon JH; Metzler R
    Phys Chem Chem Phys; 2015 Nov; 17(44):30134-47. PubMed ID: 26503611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractality of largest clusters and the percolation transition in power-law diluted chains.
    Albuquerque SS; de Moura FA; Lyra ML; de Souza AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016116. PubMed ID: 16090045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay between thermal percolation and jamming upon dimer adsorption on binary alloys.
    Loscar ES; Borzi RA; Albano EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051601. PubMed ID: 17279918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition from compact to porous films in deposition with temperature-activated diffusion.
    di Caprio D; Aarão Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012402. PubMed ID: 26274181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow measurements below 50 mum: NMR microscopy experiments in lithographic model pore spaces.
    Kossel E; Kimmich R
    Magn Reson Imaging; 2005 Feb; 23(2):397-400. PubMed ID: 15833658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.