BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 11445591)

  • 21. Solution structures of two CCHC zinc fingers from the FOG family protein U-shaped that mediate protein-protein interactions.
    Liew CK; Kowalski K; Fox AH; Newton A; Sharpe BK; Crossley M; Mackay JP
    Structure; 2000 Nov; 8(11):1157-66. PubMed ID: 11080638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular cloning of gaf1, a Schizosaccharomyces pombe GATA factor, which can function as a transcriptional activator.
    Hoe KL; Won MS; Chung KS; Park SK; Kim DU; Jang YJ; Yoo OJ; Yoo HS
    Gene; 1998 Jul; 215(2):319-28. PubMed ID: 9714831
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GATA-1 bends DNA in a site-independent fashion.
    Ghirlando R; Trainor CD
    J Biol Chem; 2000 Sep; 275(36):28152-6. PubMed ID: 10862761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction.
    Yu C; Niakan KK; Matsushita M; Stamatoyannopoulos G; Orkin SH; Raskind WH
    Blood; 2002 Sep; 100(6):2040-5. PubMed ID: 12200364
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A functionally conserved N-terminal domain of the friend of GATA-2 (FOG-2) protein represses GATA4-dependent transcription.
    Svensson EC; Huggins GS; Dardik FB; Polk CE; Leiden JM
    J Biol Chem; 2000 Jul; 275(27):20762-9. PubMed ID: 10801815
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zinc fingers 1-7 of EVI1 fail to bind to the GATA motif by itself but require the core site GACAAGATA for binding.
    Perkins AS; Kim JH
    J Biol Chem; 1996 Jan; 271(2):1104-10. PubMed ID: 8557637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A small single-"finger" peptide from the erythroid transcription factor GATA-1 binds specifically to DNA as a zinc or iron complex.
    Omichinski JG; Trainor C; Evans T; Gronenborn AM; Clore GM; Felsenfeld G
    Proc Natl Acad Sci U S A; 1993 Mar; 90(5):1676-80. PubMed ID: 8446581
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GATA-factor dependence of the multitype zinc-finger protein FOG-1 for its essential role in megakaryopoiesis.
    Chang AN; Cantor AB; Fujiwara Y; Lodish MB; Droho S; Crispino JD; Orkin SH
    Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9237-42. PubMed ID: 12077323
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro transcription of erythroid promoters using baculoviral-expressed human GATA-1: purification, physicochemistry, and activities.
    Taxman DJ; Sonsteby SK; Wojchowski DM
    Protein Expr Purif; 1994 Dec; 5(6):587-94. PubMed ID: 7858429
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation: the GATA-1:FOG complex.
    Crispino JD; Lodish MB; MacKay JP; Orkin SH
    Mol Cell; 1999 Feb; 3(2):219-28. PubMed ID: 10078204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein-protein interaction between Fli-1 and GATA-1 mediates synergistic expression of megakaryocyte-specific genes through cooperative DNA binding.
    Eisbacher M; Holmes ML; Newton A; Hogg PJ; Khachigian LM; Crossley M; Chong BH
    Mol Cell Biol; 2003 May; 23(10):3427-41. PubMed ID: 12724402
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FOG acts as a repressor of red blood cell development in Xenopus.
    Deconinck AE; Mead PE; Tevosian SG; Crispino JD; Katz SG; Zon LI; Orkin SH
    Development; 2000 May; 127(10):2031-40. PubMed ID: 10769228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Positive regulators of the lineage-specific transcription factor GATA-1 in differentiating erythroid cells.
    Baron MH; Farrington SM
    Mol Cell Biol; 1994 May; 14(5):3108-14. PubMed ID: 8164666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CREB-Binding protein acetylates hematopoietic transcription factor GATA-1 at functionally important sites.
    Hung HL; Lau J; Kim AY; Weiss MJ; Blobel GA
    Mol Cell Biol; 1999 May; 19(5):3496-505. PubMed ID: 10207073
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rescue of GATA-1-deficient embryonic stem cells by heterologous GATA-binding proteins.
    Blobel GA; Simon MC; Orkin SH
    Mol Cell Biol; 1995 Feb; 15(2):626-33. PubMed ID: 7823931
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substitution of DNA-contacting amino acids with functional variants in the Gata-1 zinc finger: a structurally and phylogenetically guided mutagenesis.
    Vonderfecht TR; Schroyer DC; Schenck BL; McDonough VM; Pikaart MJ
    Biochem Biophys Res Commun; 2008 May; 369(4):1052-6. PubMed ID: 18328814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selection of peptides with affinity for the N-terminal domain of GATA-1: Identification of a potential interacting protein.
    Secco P; Cotella D; Santoro C
    Biochem Biophys Res Commun; 2003 Jun; 305(4):1061-6. PubMed ID: 12767938
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GATA-4 interacts distinctively with negative and positive regulatory elements in the Fgf-3 promoter.
    Murakami A; Ishida S; Dickson C
    Nucleic Acids Res; 2002 Feb; 30(4):1056-64. PubMed ID: 11842118
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distinct domains of the GATA-1 cofactor FOG-1 differentially influence erythroid versus megakaryocytic maturation.
    Cantor AB; Katz SG; Orkin SH
    Mol Cell Biol; 2002 Jun; 22(12):4268-79. PubMed ID: 12024038
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural analysis of MED-1 reveals unexpected diversity in the mechanism of DNA recognition by GATA-type zinc finger domains.
    Lowry JA; Gamsjaeger R; Thong SY; Hung W; Kwan AH; Broitman-Maduro G; Matthews JM; Maduro M; Mackay JP
    J Biol Chem; 2009 Feb; 284(9):5827-35. PubMed ID: 19095651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.