These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 11445592)

  • 21. Tissue-specific expression, heat inducibility, and biological roles of two hsp16 genes in Caenorhabditis elegans.
    Shim J; Im SH; Lee J
    FEBS Lett; 2003 Feb; 537(1-3):139-45. PubMed ID: 12606046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals.
    Walker GA; Lithgow GJ
    Aging Cell; 2003 Apr; 2(2):131-9. PubMed ID: 12882326
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pattern Formation in the Longevity-Related Expression of Heat Shock Protein-16.2 in Caenorhabditis elegans.
    Wentz JM; Mendenhall AR; Bortz DM
    Bull Math Biol; 2018 Oct; 80(10):2669-2697. PubMed ID: 30097920
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction and evaluation of a transgenic hsp16-GFP-lacZ Caenorhabditis elegans strain for environmental monitoring.
    David HE; Dawe AS; de Pomerai DI; Jones D; Candido EP; Daniells C
    Environ Toxicol Chem; 2003 Jan; 22(1):111-8. PubMed ID: 12503753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The differentially expressed 16-kD heat shock genes of Caenorhabditis elegans exhibit differential changes in chromatin structure during heat shock.
    Dixon DK; Jones D; Candido EP
    DNA Cell Biol; 1990 Apr; 9(3):177-91. PubMed ID: 2160246
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress.
    Lithgow GJ; White TM; Melov S; Johnson TE
    Proc Natl Acad Sci U S A; 1995 Aug; 92(16):7540-4. PubMed ID: 7638227
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Longevity and heavy metal resistance in daf-2 and age-1 long-lived mutants of Caenorhabditis elegans.
    Barsyte D; Lovejoy DA; Lithgow GJ
    FASEB J; 2001 Mar; 15(3):627-34. PubMed ID: 11259381
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transgenic nematodes as biomonitors of microwave-induced stress.
    Daniells C; Duce I; Thomas D; Sewell P; Tattersall J; de Pomerai D
    Mutat Res; 1998 Mar; 399(1):55-64. PubMed ID: 9635489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genes that determine both thermotolerance and rate of aging in Caenorhabditis elegans.
    Walker GA; Walker DW; Lithgow GJ
    Ann N Y Acad Sci; 1998 Jun; 851():444-9. PubMed ID: 9668638
    [No Abstract]   [Full Text] [Related]  

  • 30. High transcript levels of heat-shock genes are associated with shorter lifespan of Caenorhabditis elegans.
    Manière X; Krisko A; Pellay FX; Di Meglio JM; Hersen P; Matic I
    Exp Gerontol; 2014 Dec; 60():12-7. PubMed ID: 25218444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation of kinase activities in dauers and in long-lived mutants of Caenorhabditis elegans.
    Vanfleteren JR; De Vreese A
    J Gerontol A Biol Sci Med Sci; 1997 Jul; 52(4):B212-6. PubMed ID: 9224426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic transformation of an entomopathogenic nematode by microinjection.
    Hashmi S; Hashmi G; Gaugler R
    J Invertebr Pathol; 1995 Nov; 66(3):293-6. PubMed ID: 8568284
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidative stress in Caenorhabditis elegans: protective effects of the Omega class glutathione transferase (GSTO-1).
    Burmeister C; Lüersen K; Heinick A; Hussein A; Domagalski M; Walter RD; Liebau E
    FASEB J; 2008 Feb; 22(2):343-54. PubMed ID: 17901115
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PAK1-deficiency/down-regulation reduces brood size, activates HSP16.2 gene and extends lifespan in Caenorhabditis elegans.
    Yanase S; Luo Y; Maruta H
    Drug Discov Ther; 2013 Feb; 7(1):29-35. PubMed ID: 23524941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of chlorogenic acid on thermal stress tolerance in C. elegans via HIF-1, HSF-1 and autophagy.
    Carranza ADV; Saragusti A; Chiabrando GA; Carrari F; Asis R
    Phytomedicine; 2020 Jan; 66():153132. PubMed ID: 31790899
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exposure to the metabolic inhibitor sodium azide induces stress protein expression and thermotolerance in the nematode Caenorhabditis elegans.
    Massie MR; Lapoczka EM; Boggs KD; Stine KE; White GE
    Cell Stress Chaperones; 2003; 8(1):1-7. PubMed ID: 12820649
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antiageing properties of Damaurone D in Caenorhabditis elegans.
    Kim YS; Han YT; Jeon H; Cha DS
    J Pharm Pharmacol; 2018 Oct; 70(10):1423-1429. PubMed ID: 29992572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HSF-1 is involved in regulation of ascaroside pheromone biosynthesis by heat stress in Caenorhabditis elegans.
    Joo HJ; Park S; Kim KY; Kim MY; Kim H; Park D; Paik YK
    Biochem J; 2016 Mar; 473(6):789-96. PubMed ID: 26759377
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure, organization, and expression of the 16-kDa heat shock gene family of Caenorhabditis elegans.
    Candido EP; Jones D; Dixon DK; Graham RW; Russnak RH; Kay RJ
    Genome; 1989; 31(2):690-7. PubMed ID: 2632349
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    Walton SJ; Wang H; Quintero-Cadena P; Bateman A; Sternberg PW
    Genetics; 2020 Aug; 215(4):1039-1054. PubMed ID: 32518061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.