These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 11445768)
1. Muscle strength in knee varus and valgus. Zhang LQ; Xu D; Wang G; Hendrix RW Med Sci Sports Exerc; 2001 Jul; 33(7):1194-9. PubMed ID: 11445768 [TBL] [Abstract][Full Text] [Related]
2. Relationship between hip strength and frontal plane posture of the knee during a forward lunge. Thijs Y; Van Tiggelen D; Willems T; De Clercq D; Witvrouw E Br J Sports Med; 2007 Nov; 41(11):723-7; discussion 727. PubMed ID: 17601767 [TBL] [Abstract][Full Text] [Related]
3. Rotational flexibility of the human knee due to varus/valgus and axial moments in vivo. Mills OS; Hull ML J Biomech; 1991; 24(8):673-90. PubMed ID: 1918091 [TBL] [Abstract][Full Text] [Related]
4. [Changes in knee kinematics and quadriceps and hamstrings moment arms after high valgus and varus tibial "dome" osteotomy: An in vitro study]. Baillon B; Salvia P; Feipel V; Rooze M Rev Chir Orthop Reparatrice Appar Mot; 2006 Sep; 92(5):464-72. PubMed ID: 17088740 [TBL] [Abstract][Full Text] [Related]
5. Physiological coxa varus-genu valgus influences internal knee and ankle joint moments in females during crossover cutting. Nyland JA; Caborn DN Knee Surg Sports Traumatol Arthrosc; 2004 Jul; 12(4):285-93. PubMed ID: 14618320 [TBL] [Abstract][Full Text] [Related]
6. Do varus or valgus outliers have higher forces in the medial or lateral compartments than those which are in-range after a kinematically aligned total knee arthroplasty? limb and joint line alignment after kinematically aligned total knee arthroplasty. Shelton TJ; Nedopil AJ; Howell SM; Hull ML Bone Joint J; 2017 Oct; 99-B(10):1319-1328. PubMed ID: 28963153 [TBL] [Abstract][Full Text] [Related]
7. Muscle activation at the human knee during isometric flexion-extension and varus-valgus loads. Buchanan TS; Lloyd DG J Orthop Res; 1997 Jan; 15(1):11-7. PubMed ID: 9066521 [TBL] [Abstract][Full Text] [Related]
8. Effect of muscular activity on valgus/varus laxity and stiffness of the knee. Olmstead TG; Wevers HW; Bryant JT; Gouw GJ J Biomech; 1986; 19(8):565-77. PubMed ID: 3771579 [TBL] [Abstract][Full Text] [Related]
9. Mismatch between femur and tibia coronal alignment in the knee joint: classification of five lower limb types according to femoral and tibial mechanical alignment. Lin YH; Chang FS; Chen KH; Huang KC; Su KC BMC Musculoskelet Disord; 2018 Nov; 19(1):411. PubMed ID: 30474544 [TBL] [Abstract][Full Text] [Related]
10. Primary and coupled motions of the native knee in response to applied varus and valgus load. Gladnick BP; Boorman-Padgett J; Stone K; Kent RN; Cross MB; Mayman DJ; Pearle AD; Imhauser CW Knee; 2016 Jun; 23(3):387-92. PubMed ID: 26875048 [TBL] [Abstract][Full Text] [Related]
11. Muscular resistance to varus and valgus loads at the elbow. Buchanan TS; Delp SL; Solbeck JA J Biomech Eng; 1998 Oct; 120(5):634-9. PubMed ID: 10412442 [TBL] [Abstract][Full Text] [Related]
12. Strategies of muscular support of varus and valgus isometric loads at the human knee. Lloyd DG; Buchanan TS J Biomech; 2001 Oct; 34(10):1257-67. PubMed ID: 11522305 [TBL] [Abstract][Full Text] [Related]
13. Anterior cruciate ligament function in providing rotational stability assessed by medial and lateral tibiofemoral compartment translations and subluxations. Noyes FR; Jetter AW; Grood ES; Harms SP; Gardner EJ; Levy MS Am J Sports Med; 2015 Mar; 43(3):683-92. PubMed ID: 25540296 [TBL] [Abstract][Full Text] [Related]
14. Muscle activation strategies at the knee during running and cutting maneuvers. Besier TF; Lloyd DG; Ackland TR Med Sci Sports Exerc; 2003 Jan; 35(1):119-27. PubMed ID: 12544645 [TBL] [Abstract][Full Text] [Related]
15. How changing the inversion/eversion foot angle affects the nondriving intersegmental knee moments and the relative activation of the vastii muscles in cycling. Gregersen CS; Hull ML; Hakansson NA J Biomech Eng; 2006 Jun; 128(3):391-8. PubMed ID: 16706588 [TBL] [Abstract][Full Text] [Related]
16. Relationship between hip and knee strength and knee valgus during a single leg squat. Claiborne TL; Armstrong CW; Gandhi V; Pincivero DM J Appl Biomech; 2006 Feb; 22(1):41-50. PubMed ID: 16760566 [TBL] [Abstract][Full Text] [Related]
17. Frontal and transverse plane hip kinematics and gluteus maximus recruitment correlate with frontal plane knee kinematics during single-leg squat tests in women. Hollman JH; Galardi CM; Lin IH; Voth BC; Whitmarsh CL Clin Biomech (Bristol); 2014 Apr; 29(4):468-74. PubMed ID: 24467971 [TBL] [Abstract][Full Text] [Related]
18. Selective muscle activation following rapid varus/valgus perturbations at the knee. Buchanan TS; Kim AW; Lloyd DG Med Sci Sports Exerc; 1996 Jul; 28(7):870-6. PubMed ID: 8832541 [TBL] [Abstract][Full Text] [Related]
19. Non-knee-spanning muscles contribute to tibiofemoral shear as well as valgus and rotational joint reaction moments during unanticipated sidestep cutting. Maniar N; Schache AG; Sritharan P; Opar DA Sci Rep; 2018 Feb; 8(1):2501. PubMed ID: 29410451 [TBL] [Abstract][Full Text] [Related]
20. Do counteracting external frontal plane moments alter the intraarticular contact force distribution in the loaded human tibiofemoral joint? Engel K; Brüggemann GP; Heinrich K; Potthast W; Liebau C Knee; 2015 Mar; 22(2):68-72. PubMed ID: 25555618 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]