These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 11445956)
1. Development of an SPME/ATR-IR chemical sensor for detection of phenol type compounds in aqueous solutions. Yang J; Cheng ML Analyst; 2001 Jun; 126(6):881-6. PubMed ID: 11445956 [TBL] [Abstract][Full Text] [Related]
2. Development of a solid-phase microextraction/reflection-absorption infrared spectroscopic method for the detection of chlorinated aromatic amines in aqueous solutions. Yang J; Tsai FP Anal Sci; 2001 Jun; 17(6):751-6. PubMed ID: 11707946 [TBL] [Abstract][Full Text] [Related]
3. Development, validation and application of a method to analyze phenols in water samples by solid phase micro extraction-gas chromatography-flame ionization detector. Lanças FM; Olivares IR; Alves PM J Environ Sci Health B; 2007; 42(5):491-8. PubMed ID: 17562456 [TBL] [Abstract][Full Text] [Related]
4. Novel polyamide-based nanofibers prepared by electrospinning technique for headspace solid-phase microextraction of phenol and chlorophenols from environmental samples. Bagheri H; Aghakhani A; Baghernejad M; Akbarinejad A Anal Chim Acta; 2012 Feb; 716():34-9. PubMed ID: 22284875 [TBL] [Abstract][Full Text] [Related]
5. Development of the infrared hollow waveguide sampler for the detection of chlorophenols in aqueous solutions. Yang J; Lee CJ J AOAC Int; 2002; 85(1):163-72. PubMed ID: 11878597 [TBL] [Abstract][Full Text] [Related]
6. Gas-Assisted IR-ATR Probe for Detection of Volatile Compounds in Aqueous Solutions. Yang J; Her JW Anal Chem; 1999 May; 71(9):1773-9. PubMed ID: 21662817 [TBL] [Abstract][Full Text] [Related]
7. Determination of bisphenol A in water by isotope dilution headspace solid-phase microextraction and gas chromatography/mass spectrometry without derivatization. Cao XL; Corriveau J J AOAC Int; 2008; 91(3):622-9. PubMed ID: 18567309 [TBL] [Abstract][Full Text] [Related]
8. Polymeric ionic liquid coatings versus commercial solid-phase microextraction coatings for the determination of volatile compounds in cheeses. Trujillo-Rodríguez MJ; Yu H; Cole WT; Ho TD; Pino V; Anderson JL; Afonso AM Talanta; 2014 Apr; 121():153-62. PubMed ID: 24607122 [TBL] [Abstract][Full Text] [Related]
9. Infrared reflection-absorption method for the detection of aromatic compounds in aqueous solutions with limited sample volumes. Yang J; Chen PY Anal Sci; 2002 Nov; 18(11):1247-52. PubMed ID: 12458711 [TBL] [Abstract][Full Text] [Related]
10. Fast determination of phenols in contaminated soils. Baciocchi R; Attinà M; Lombardi G; Boni MR J Chromatogr A; 2001 Mar; 911(1):135-41. PubMed ID: 11269592 [TBL] [Abstract][Full Text] [Related]
11. Column silylation method for determining endocrine disruptors from environmental water samples by solid phase micro-extraction. Helaleh MI; Fujii S; Korenaga T Talanta; 2001 Jul; 54(6):1039-47. PubMed ID: 18968325 [TBL] [Abstract][Full Text] [Related]
12. Development of a solid-phase microextraction method for the analysis of phenolic flame retardants in water samples. Polo M; Llompart M; Garcia-Jares C; Gomez-Noya G; Bollain MH; Cela R J Chromatogr A; 2006 Aug; 1124(1-2):11-21. PubMed ID: 16600262 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of Metal-Organic Framework MOF-177 Coatings on Stainless Steel Fibers for Head-Space Solid-Phase Microextraction of Phenols. Wang GH; Lei YQ Bull Environ Contam Toxicol; 2017 Aug; 99(2):270-275. PubMed ID: 28500355 [TBL] [Abstract][Full Text] [Related]
14. Solid-phase microextraction and gas chromatography-mass spectrometry for analysis of phenols and nitrophenols in rainwater, as their t-butyldimethylsilyl derivatives. Jaber F; Schummer C; Al Chami J; Mirabel P; Millet M Anal Bioanal Chem; 2007 Apr; 387(7):2527-35. PubMed ID: 17260132 [TBL] [Abstract][Full Text] [Related]
15. Metal-organic framework UiO-66 coated stainless steel fiber for solid-phase microextraction of phenols in water samples. Shang HB; Yang CX; Yan XP J Chromatogr A; 2014 Aug; 1357():165-71. PubMed ID: 24891159 [TBL] [Abstract][Full Text] [Related]
16. Monodisperse silica nanoparticles coated with gold nanoparticles as a sorbent for the extraction of phenol and dihydroxybenzenes from water samples based on dispersive micro-solid-phase extraction: Response surface methodology. Khezeli T; Daneshfar A J Sep Sci; 2015 Aug; 38(16):2804-12. PubMed ID: 26075653 [TBL] [Abstract][Full Text] [Related]
17. Vacuum-assisted headspace-solid phase microextraction for determining volatile free fatty acids and phenols. Investigations on the effect of pressure on competitive adsorption phenomena in a multicomponent system. Trujillo-Rodríguez MJ; Pino V; Psillakis E; Anderson JL; Ayala JH; Yiantzi E; Afonso AM Anal Chim Acta; 2017 Apr; 962():41-51. PubMed ID: 28231879 [TBL] [Abstract][Full Text] [Related]
18. A novel sol-gel-based amino-functionalized fiber for headspace solid-phase microextraction of phenol and chlorophenols from environmental samples. Bagheri H; Babanezhad E; Khalilian F Anal Chim Acta; 2008 May; 616(1):49-55. PubMed ID: 18471483 [TBL] [Abstract][Full Text] [Related]
19. Monitoring of selected estrogen mimics in complicated samples using polymeric ionic liquid-based multiple monolithic fiber solid-phase microextraction combined with high-performance liquid chromatography. Mei M; Yu J; Huang X; Li H; Lin L; Yuan D J Chromatogr A; 2015 Mar; 1385():12-9. PubMed ID: 25680551 [TBL] [Abstract][Full Text] [Related]
20. Oxidized multiwalled carbon nanotubes as a novel solid-phase microextraction fiber for determination of phenols in aqueous samples. Liu X; Ji Y; Zhang Y; Zhang H; Liu M J Chromatogr A; 2007 Sep; 1165(1-2):10-7. PubMed ID: 17707386 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]