These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11446808)

  • 1. Surface Chemistry of Activated Carbons: Combining the Results of Temperature-Programmed Desorption, Boehm, and Potentiometric Titrations.
    Salame II; Bandosz TJ
    J Colloid Interface Sci; 2001 Aug; 240(1):252-258. PubMed ID: 11446808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Surface Characteristics of Wood-Based Activated Carbons on Adsorption of Hydrogen Sulfide.
    Adib F; Bagreev A; Bandosz TJ
    J Colloid Interface Sci; 1999 Jun; 214(2):407-415. PubMed ID: 10339382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of surface oxygen groups in incorporation of nitrogen to activated carbons via ethylmethylamine adsorption.
    El-Sayed Y; Bandosz TJ
    Langmuir; 2005 Feb; 21(4):1282-9. PubMed ID: 15697272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pH and Surface Chemistry on the Mechanism of H(2)S Removal by Activated Carbons.
    Adib F; Bagreev A; Bandosz TJ
    J Colloid Interface Sci; 1999 Aug; 216(2):360-369. PubMed ID: 10421743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of Water Adsorption on Activated Carbons with Different Degrees of Surface Oxidation.
    Salame II; Bandosz TJ
    J Colloid Interface Sci; 1999 Feb; 210(2):367-374. PubMed ID: 9929424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of valeric acid from aqueous solution onto activated carbons: role of surface basic sites.
    El-Sayed Y; Bandosz TJ
    J Colloid Interface Sci; 2004 May; 273(1):64-72. PubMed ID: 15051433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures.
    Bandosz TJ
    J Colloid Interface Sci; 2002 Feb; 246(1):1-20. PubMed ID: 16290378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of activated carbons modification on porosity, surface structure and phenol adsorption.
    Stavropoulos GG; Samaras P; Sakellaropoulos GP
    J Hazard Mater; 2008 Mar; 151(2-3):414-21. PubMed ID: 17644248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of surface chemistry in adsorption of phenol on activated carbons.
    Salame II; Bandosz TJ
    J Colloid Interface Sci; 2003 Aug; 264(2):307-12. PubMed ID: 16256645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Study of the Adsorption from Aqueous Solutions and the Desorption of Phenol and Nonylphenol Substrates on Activated Carbons.
    Nevskaia DM; Guerrero-Ruiz A
    J Colloid Interface Sci; 2001 Feb; 234(2):316-321. PubMed ID: 11161516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of carbon surface chemistry by combined temperature programmed desorption with in situ X-ray photoelectron spectrometry and temperature programmed desorption with mass spectrometry analysis.
    Brender P; Gadiou R; Rietsch JC; Fioux P; Dentzer J; Ponche A; Vix-Guterl C
    Anal Chem; 2012 Mar; 84(5):2147-53. PubMed ID: 22242697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced adsorption of phenolic compounds, commonly encountered in olive mill wastewaters, on olive husk derived activated carbons.
    Michailof C; Stavropoulos GG; Panayiotou C
    Bioresour Technol; 2008 Sep; 99(14):6400-8. PubMed ID: 18178430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study.
    Kundu S; Xia W; Busser W; Becker M; Schmidt DA; Havenith M; Muhler M
    Phys Chem Chem Phys; 2010 May; 12(17):4351-9. PubMed ID: 20407706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of 4,6-dimethyldibenzothiophene with the surface of activated carbons.
    Deliyanni E; Seredych M; Bandosz TJ
    Langmuir; 2009 Aug; 25(16):9302-12. PubMed ID: 19719225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of nitrobenzene adsorption by water cluster formation at acidic oxygen functional groups on activated carbon.
    Kato Y; Machida M; Tatsumoto H
    J Colloid Interface Sci; 2008 Jun; 322(2):394-8. PubMed ID: 18440013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of surface chemistry on the adsorption of oxygenated hydrocarbons on activated carbons.
    Ghimbeu CM; Gadiou R; Dentzer J; Schwartz D; Vix-Guterl C
    Langmuir; 2010 Dec; 26(24):18824-33. PubMed ID: 21117633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the characterization of chemical surface groups of carbon materials.
    Domingo-García M; López Garzón FJ; Pérez-Mendoza MJ
    J Colloid Interface Sci; 2002 Apr; 248(1):116-22. PubMed ID: 16290511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical properties of carbons prepared from pecan shell by phosphoric acid activation.
    Guo Y; Rockstraw DA
    Bioresour Technol; 2007 May; 98(8):1513-21. PubMed ID: 16973352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds.
    Bandosz TJ; Petit C
    J Colloid Interface Sci; 2009 Oct; 338(2):329-45. PubMed ID: 19615690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactions of nitrogen and oxygen surface groups in nanoporous carbons under inert and reducing atmospheres.
    Xiao B; Boudou JP; Thomas KM
    Langmuir; 2005 Apr; 21(8):3400-9. PubMed ID: 15807580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.