These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 11447064)

  • 41. Optimization of muscle wrapping objects using simulated annealing.
    Gatti CJ; Hughes RE
    Ann Biomed Eng; 2009 Jul; 37(7):1342-7. PubMed ID: 19434495
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Beyond parameter estimation: extending biomechanical modeling by the explicit exploration of model topology.
    Valero-Cuevas FJ; Anand VV; Saxena A; Lipson H
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1951-64. PubMed ID: 18018690
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A muscle controlled finite-element model of laryngeal abduction and adduction.
    Gömmel A; Butenweg C; Bolender K; Grunendahl A
    Comput Methods Biomech Biomed Engin; 2007 Oct; 10(5):377-88. PubMed ID: 17891575
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The BUMP model of response planning: intermittent predictive control accounts for 10 Hz physiological tremor.
    Bye RT; Neilson PD
    Hum Mov Sci; 2010 Oct; 29(5):713-36. PubMed ID: 20674054
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A general-purpose framework to simulate musculoskeletal system of human body: using a motion tracking approach.
    Ehsani H; Rostami M; Gudarzi M
    Comput Methods Biomech Biomed Engin; 2016 Feb; 19(3):306-319. PubMed ID: 25761607
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adaptive surrogate modeling for efficient coupling of musculoskeletal control and tissue deformation models.
    Halloran JP; Erdemir A; van den Bogert AJ
    J Biomech Eng; 2009 Jan; 131(1):011014. PubMed ID: 19045930
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Virtual muscle: a computational approach to understanding the effects of muscle properties on motor control.
    Cheng EJ; Brown IE; Loeb GE
    J Neurosci Methods; 2000 Sep; 101(2):117-30. PubMed ID: 10996372
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamics systems vs. optimal control--a unifying view.
    Schaal S; Mohajerian P; Ijspeert A
    Prog Brain Res; 2007; 165():425-45. PubMed ID: 17925262
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The inverse dynamics problem of neuromuscular control.
    Hatze H
    Biol Cybern; 2000 Feb; 82(2):133-41. PubMed ID: 10664100
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Novel Optimization Framework to Improve the Computational Cost of Muscle Activation Prediction for a Neuromusculoskeletal System.
    Rahmati SMA; Rostami M; Karimi A
    Neural Comput; 2019 Mar; 31(3):574-595. PubMed ID: 30645182
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling and identification of human neuromusculoskeletal network based on biomechanical property of muscle.
    Murai A; Yamane K; Nakamura Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3706-9. PubMed ID: 19163517
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inclusion of actuator dynamics in simulations of assisted human movement.
    Nguyen VQ; LaPre AK; Price MA; Umberger BR; Sup FC
    Int J Numer Method Biomed Eng; 2020 May; 36(5):e3334. PubMed ID: 32170995
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Direct Methods for Predicting Movement Biomechanics Based Upon Optimal Control Theory with Implementation in OpenSim.
    Porsa S; Lin YC; Pandy MG
    Ann Biomed Eng; 2016 Aug; 44(8):2542-2557. PubMed ID: 26715209
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modeling and simulation of complex dynamic musculoskeletal architectures.
    Zhang X; Chan FK; Parthasarathy T; Gazzola M
    Nat Commun; 2019 Oct; 10(1):4825. PubMed ID: 31645555
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model.
    Saul KR; Hu X; Goehler CM; Vidt ME; Daly M; Velisar A; Murray WM
    Comput Methods Biomech Biomed Engin; 2015; 18(13):1445-58. PubMed ID: 24995410
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Workloop energetics of antagonist muscles.
    Farahat W; Herr H
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3640-3. PubMed ID: 17947046
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Muscle wrapping on arbitrary meshes with the heat method.
    Zarifi O; Stavness I
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(2):119-129. PubMed ID: 27454151
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neuromuscular control: introduction and overview.
    van Leeuwen JL
    Philos Trans R Soc Lond B Biol Sci; 1999 May; 354(1385):841-7. PubMed ID: 10382220
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Constraints on the complete optimization of human motion.
    Glazier PS; Davids K
    Sports Med; 2009; 39(1):15-28. PubMed ID: 19093693
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A multi-phase optimal control technique for the simulation of a human vertical jump.
    Spägele T; Kistner A; Gollhofer A
    J Biomech; 1999 Jan; 32(1):87-91. PubMed ID: 10050955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.