These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 11447176)

  • 1. Cu,Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst.
    Piddington DL; Fang FC; Laessig T; Cooper AM; Orme IM; Buchmeier NA
    Infect Immun; 2001 Aug; 69(8):4980-7. PubMed ID: 11447176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Brucella abortus Cu,Zn superoxide dismutase is required for optimal resistance to oxidative killing by murine macrophages and wild-type virulence in experimentally infected mice.
    Gee JM; Valderas MW; Kovach ME; Grippe VK; Robertson GT; Ng WL; Richardson JM; Winkler ME; Roop RM
    Infect Immun; 2005 May; 73(5):2873-80. PubMed ID: 15845493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase.
    De Groote MA; Ochsner UA; Shiloh MU; Nathan C; McCord JM; Dinauer MC; Libby SJ; Vazquez-Torres A; Xu Y; Fang FC
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13997-4001. PubMed ID: 9391141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of SodC, a periplasmic superoxide dismutase from Burkholderia cenocepacia.
    Keith KE; Valvano MA
    Infect Immun; 2007 May; 75(5):2451-60. PubMed ID: 17325048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst.
    Ng VH; Cox JS; Sousa AO; MacMicking JD; McKinney JD
    Mol Microbiol; 2004 Jun; 52(5):1291-302. PubMed ID: 15165233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid modification of the Cu,Zn superoxide dismutase from Mycobacterium tuberculosis.
    D'orazio M; Folcarelli S; Mariani F; Colizzi V; Rotilio G; Battistoni A
    Biochem J; 2001 Oct; 359(Pt 1):17-22. PubMed ID: 11563965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and subcellular localization of a novel Cu,Zn superoxide dismutase of Mycobacterium tuberculosis.
    Wu CH; Tsai-Wu JJ; Huang YT; Lin CY; Lioua GG; Lee FJ
    FEBS Lett; 1998 Nov; 439(1-2):192-6. PubMed ID: 9849904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periplasmic Cu,Zn superoxide dismutase and cytoplasmic Dps concur in protecting Salmonella enterica serovar Typhimurium from extracellular reactive oxygen species.
    Pacello F; Ceci P; Ammendola S; Pasquali P; Chiancone E; Battistoni A
    Biochim Biophys Acta; 2008 Feb; 1780(2):226-32. PubMed ID: 18166161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of superoxide dismutase in the survival of Mycobacterium tuberculosis in macrophages.
    Liao D; Fan Q; Bao L
    Jpn J Infect Dis; 2013; 66(6):480-8. PubMed ID: 24270134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of two periplasmic copper- and zinc-cofactored superoxide dismutases in the virulence of Salmonella choleraesuis.
    Sansone A; Watson PR; Wallis TS; Langford PR; Kroll JS
    Microbiology (Reading); 2002 Mar; 148(Pt 3):719-726. PubMed ID: 11882706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Periplasmic copper-zinc superoxide dismutase protects Haemophilus ducreyi from exogenous superoxide.
    San Mateo LR; Hobbs MM; Kawula TH
    Mol Microbiol; 1998 Jan; 27(2):391-404. PubMed ID: 9484894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Francisella tularensis live vaccine strain CuZn superoxide dismutase as critical for resistance to extracellularly generated reactive oxygen species.
    Melillo AA; Mahawar M; Sellati TJ; Malik M; Metzger DW; Melendez JA; Bakshi CS
    J Bacteriol; 2009 Oct; 191(20):6447-56. PubMed ID: 19684141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absence of complement receptor 3 results in reduced binding and ingestion of Mycobacterium tuberculosis but has no significant effect on the induction of reactive oxygen and nitrogen intermediates or on the survival of the bacteria in resident and interferon-gamma activated macrophages.
    Rooyakkers AW; Stokes RW
    Microb Pathog; 2005 Sep; 39(3):57-67. PubMed ID: 16084683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Mycobacterium tuberculosis copper-zinc superoxide dismutase.
    Dussurget O; Stewart G; Neyrolles O; Pescher P; Young D; Marchal G
    Infect Immun; 2001 Jan; 69(1):529-33. PubMed ID: 11119546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro.
    Vazquez-Torres A; Jones-Carson J; Mastroeni P; Ischiropoulos H; Fang FC
    J Exp Med; 2000 Jul; 192(2):227-36. PubMed ID: 10899909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial copper- and zinc-cofactored superoxide dismutase contributes to the pathogenesis of systemic salmonellosis.
    Farrant JL; Sansone A; Canvin JR; Pallen MJ; Langford PR; Wallis TS; Dougan G; Kroll JS
    Mol Microbiol; 1997 Aug; 25(4):785-96. PubMed ID: 9379906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperation between reactive oxygen and nitrogen intermediates in killing of Rhodococcus equi by activated macrophages.
    Darrah PA; Hondalus MK; Chen Q; Ischiropoulos H; Mosser DM
    Infect Immun; 2000 Jun; 68(6):3587-93. PubMed ID: 10816516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative roles of free fatty acids with reactive nitrogen intermediates and reactive oxygen intermediates in expression of the anti-microbial activity of macrophages against Mycobacterium tuberculosis.
    Akaki T; Tomioka H; Shimizu T; Dekio S; Sato K
    Clin Exp Immunol; 2000 Aug; 121(2):302-10. PubMed ID: 10931146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of superoxide anion in the fungicidal activity of murine peritoneal exudate macrophages against Penicillium marneffei.
    Kudeken N; Kawakami K; Saito A
    Microbiol Immunol; 1999; 43(4):323-30. PubMed ID: 10385198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The contribution of reactive nitrogen and oxygen species to the killing of Francisella tularensis LVS by murine macrophages.
    Lindgren H; Stenman L; Tärnvik A; Sjöstedt A
    Microbes Infect; 2005 Mar; 7(3):467-75. PubMed ID: 15788155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.