BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 11447233)

  • 1. The molecular chaperone, alpha-crystallin, inhibits amyloid formation by apolipoprotein C-II.
    Hatters DM; Lindner RA; Carver JA; Howlett GJ
    J Biol Chem; 2001 Sep; 276(36):33755-61. PubMed ID: 11447233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding accelerates amyloid formation by human apolipoprotein C-II.
    Hatters DM; Minton AP; Howlett GJ
    J Biol Chem; 2002 Mar; 277(10):7824-30. PubMed ID: 11751863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human apolipoprotein C-II forms twisted amyloid ribbons and closed loops.
    Hatters DM; MacPhee CE; Lawrence LJ; Sawyer WH; Howlett GJ
    Biochemistry; 2000 Jul; 39(28):8276-83. PubMed ID: 10889036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of apolipoprotein C-II amyloid formation by the extracellular chaperone, clusterin.
    Hatters DM; Wilson MR; Easterbrook-Smith SB; Howlett GJ
    Eur J Biochem; 2002 Jun; 269(11):2789-94. PubMed ID: 12047389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence detection of a lipid-induced tetrameric intermediate in amyloid fibril formation by apolipoprotein C-II.
    Ryan TM; Howlett GJ; Bailey MF
    J Biol Chem; 2008 Dec; 283(50):35118-28. PubMed ID: 18852267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structural core within apolipoprotein C-II amyloid fibrils identified using hydrogen exchange and proteolysis.
    Wilson LM; Mok YF; Binger KJ; Griffin MD; Mertens HD; Lin F; Wade JD; Gooley PR; Howlett GJ
    J Mol Biol; 2007 Mar; 366(5):1639-51. PubMed ID: 17217959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Avoiding the oligomeric state: αB-crystallin inhibits fragmentation and induces dissociation of apolipoprotein C-II amyloid fibrils.
    Binger KJ; Ecroyd H; Yang S; Carver JA; Howlett GJ; Griffin MD
    FASEB J; 2013 Mar; 27(3):1214-22. PubMed ID: 23159935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N- and C-terminal regions of αB-crystallin and Hsp27 mediate inhibition of amyloid nucleation, fibril binding, and fibril disaggregation.
    Selig EE; Zlatic CO; Cox D; Mok YF; Gooley PR; Ecroyd H; Griffin MDW
    J Biol Chem; 2020 Jul; 295(29):9838-9854. PubMed ID: 32417755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring the prevention of amyloid fibril formation by alpha-crystallin. Temperature dependence and the nature of the aggregating species.
    Rekas A; Jankova L; Thorn DC; Cappai R; Carver JA
    FEBS J; 2007 Dec; 274(24):6290-304. PubMed ID: 18005258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipid interaction induces molecular-level polymorphism in apolipoprotein C-II amyloid fibrils via alternative assembly pathways.
    Griffin MD; Mok ML; Wilson LM; Pham CL; Waddington LJ; Perugini MA; Howlett GJ
    J Mol Biol; 2008 Jan; 375(1):240-56. PubMed ID: 18005990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-linking and amyloid formation by N- and C-terminal cysteine derivatives of human apolipoprotein C-II.
    Pham CL; Hatters DM; Lawrence LJ; Howlett GJ
    Biochemistry; 2002 Dec; 41(48):14313-22. PubMed ID: 12450397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-affinity amphipathic modulators of amyloid fibril nucleation and elongation.
    Ryan TM; Griffin MD; Teoh CL; Ooi J; Howlett GJ
    J Mol Biol; 2011 Feb; 406(3):416-29. PubMed ID: 21185302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipids enhance nucleation but not elongation of apolipoprotein C-II amyloid fibrils.
    Ryan TM; Teoh CL; Griffin MD; Bailey MF; Schuck P; Howlett GJ
    J Mol Biol; 2010 Jun; 399(5):731-40. PubMed ID: 20433849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sub-micellar phospholipid accelerates amyloid formation by apolipoprotein C-II.
    Hatters DM; Lawrence LJ; Howlett GJ
    FEBS Lett; 2001 Apr; 494(3):220-4. PubMed ID: 11311244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sedimentation velocity analysis of flexible macromolecules: self-association and tangling of amyloid fibrils.
    MacRaild CA; Hatters DM; Lawrence LJ; Howlett GJ
    Biophys J; 2003 Apr; 84(4):2562-9. PubMed ID: 12668464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavior of apolipoprotein C-II in an aqueous solution.
    Tajima S; Yokoyama S; Kawai Y; Yamamoto A
    J Biochem; 1982 Apr; 91(4):1273-9. PubMed ID: 7096287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of detergents with bovine lens alpha-crystallin: evidence for an oligomeric structure based on amphiphilic interactions.
    Aerts T; Clauwaert J; Haezebrouck P; Peeters E; Van Dael H
    Eur Biophys J; 1997; 25(5-6):445-54. PubMed ID: 9188167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. alpha-Crystallin chaperone-like activity and membrane binding in age-related cataracts.
    Cobb BA; Petrash JM
    Biochemistry; 2002 Jan; 41(2):483-90. PubMed ID: 11781086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear flow induced changes in apolipoprotein C-II conformation and amyloid fibril formation.
    Teoh CL; Bekard IB; Asimakis P; Griffin MD; Ryan TM; Dunstan DE; Howlett GJ
    Biochemistry; 2011 May; 50(19):4046-57. PubMed ID: 21476595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An equilibrium model for linear and closed-loop amyloid fibril formation.
    Yang S; Griffin MD; Binger KJ; Schuck P; Howlett GJ
    J Mol Biol; 2012 Aug; 421(2-3):364-77. PubMed ID: 22370559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.