BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 11447584)

  • 21. Experience-driven axon retraction in the pharmacologically inactivated visual cortex does not require synaptic transmission.
    Watanabe K; Morishima Y; Toigawa M; Hata Y
    PLoS One; 2009; 4(1):e4193. PubMed ID: 19142221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence that molecules influencing axonal growth and termination in the developing geniculocortical pathway are conserved between divergent mammalian species.
    Lotto RB; Price DJ
    Brain Res Dev Brain Res; 1994 Aug; 81(1):17-25. PubMed ID: 7805283
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NT-4-mediated rescue of lateral geniculate neurons from effects of monocular deprivation.
    Riddle DR; Lo DC; Katz LC
    Nature; 1995 Nov; 378(6553):189-91. PubMed ID: 7477322
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential dependency of cutaneous mechanoreceptors on neurotrophins, trk receptors, and P75 LNGFR.
    Fundin BT; Silos-Santiago I; Ernfors P; Fagan AM; Aldskogius H; DeChiara TM; Phillips HS; Barbacid M; Yancopoulos GD; Rice FL
    Dev Biol; 1997 Oct; 190(1):94-116. PubMed ID: 9331334
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TrkB signaling regulates the developmental maturation of the somatosensory cortex.
    Lush ME; Ma L; Parada LF
    Int J Dev Neurosci; 2005 Oct; 23(6):523-36. PubMed ID: 16009525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation.
    Shatz CJ; Stryker MP
    J Physiol; 1978 Aug; 281():267-83. PubMed ID: 702379
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interactions between TrkB signaling and serotonin excess in the developing murine somatosensory cortex: a role in tangential and radial organization of thalamocortical axons.
    Vitalis T; Cases O; Gillies K; Hanoun N; Hamon M; Seif I; Gaspar P; Kind P; Price DJ
    J Neurosci; 2002 Jun; 22(12):4987-5000. PubMed ID: 12077195
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Emergence of ocular dominance columns in cat visual cortex by 2 weeks of age.
    Crair MC; Horton JC; Antonini A; Stryker MP
    J Comp Neurol; 2001 Feb; 430(2):235-49. PubMed ID: 11135259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex.
    Chapman B; Zahs KR; Stryker MP
    J Neurosci; 1991 May; 11(5):1347-58. PubMed ID: 2027051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TrkB receptor ligands promote activity-dependent inhibitory synaptogenesis.
    Seil FJ; Drake-Baumann R
    J Neurosci; 2000 Jul; 20(14):5367-73. PubMed ID: 10884321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Innervation patterns of single physiologically identified geniculocortical axons in the striate cortex of the tree shrew.
    Fitzpatrick D; Raczkowski D
    Proc Natl Acad Sci U S A; 1990 Jan; 87(1):449-53. PubMed ID: 1688659
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The distribution and morphology of LGN K pathway axons within the layers and CO blobs of owl monkey V1.
    Ding Y; Casagrande VA
    Vis Neurosci; 1997; 14(4):691-704. PubMed ID: 9278998
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Projection patterns of individual X- and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat.
    Humphrey AL; Sur M; Uhlrich DJ; Sherman SM
    J Comp Neurol; 1985 Mar; 233(2):159-89. PubMed ID: 3973100
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid regulation of brain-derived neurotrophic factor mRNA within eye-specific circuits during ocular dominance column formation.
    Lein ES; Shatz CJ
    J Neurosci; 2000 Feb; 20(4):1470-83. PubMed ID: 10662837
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phaseolus vulgaris leucoagglutinin (PHA-L): a neuroanatomical tracer for electron microscopic analysis of synaptic circuitry in the cat's dorsal lateral geniculate nucleus.
    Cucchiaro JB; Uhlrich DJ
    J Electron Microsc Tech; 1990 Aug; 15(4):352-68. PubMed ID: 2391562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat.
    Martin KA; Whitteridge D
    J Physiol; 1984 Aug; 353():463-504. PubMed ID: 6481629
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of monocular deprivation on geniculocortical synapses in the cat.
    Tieman SB
    J Comp Neurol; 1984 Jan; 222(2):166-76. PubMed ID: 6699206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A numerical analysis of the geniculocortical input to striate cortex in the monkey.
    Peters A; Payne BR; Budd J
    Cereb Cortex; 1994; 4(3):215-29. PubMed ID: 8075528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid remodeling of axonal arbors in the visual cortex.
    Antonini A; Stryker MP
    Science; 1993 Jun; 260(5115):1819-21. PubMed ID: 8511592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synaptic and neurochemical characterization of parallel pathways to the cytochrome oxidase blobs of primate visual cortex.
    Ding Y; Casagrande VA
    J Comp Neurol; 1998 Feb; 391(4):429-43. PubMed ID: 9486823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.