These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 11448038)

  • 1. Comparative genomic in situ hybridization (cGISH) analysis on plant chromosomes revealed by labelled Arabidopsis DNA.
    Zoller JF; Yang Y; Herrmann RG; Hohmann U
    Chromosome Res; 2001; 9(5):357-75. PubMed ID: 11448038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeated DNA sequences isolated by microdissection. I. Karyotyping of barley (Hordeum vulgare L.).
    Busch W; Martin R; Herrmann RG; Hohmann U
    Genome; 1995 Dec; 38(6):1082-90. PubMed ID: 8654909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination of repetitive sequences polymorphism in Secale cereale by genomic in situ hybridization-banding.
    Zhou JP; Yang ZJ; Li GR; Liu C; Ren ZL
    J Integr Plant Biol; 2008 Apr; 50(4):452-6. PubMed ID: 18713379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent in situ hybridization and C-banding analyses of highly repetitive DNA sequences in the heterochromatin of rye (Secale montanum Guss.) and wheat incorporating S. montanum chromosome segments.
    Cuadrado A; Jouve N
    Genome; 1995 Aug; 38(4):795-802. PubMed ID: 7672610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping.
    Zhang Y; Cheng C; Li J; Yang S; Wang Y; Li Z; Chen J; Lou Q
    BMC Genomics; 2015 Sep; 16(1):730. PubMed ID: 26407707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The distribution of repetitive DNAs along chromosomes in plants revealed by self-genomic in situ hybridization.
    She C; Liu J; Diao Y; Hu Z; Song Y
    J Genet Genomics; 2007 May; 34(5):437-48. PubMed ID: 17560530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular diversification of tandemly organized DNA sequences and heterochromatic chromosome regions in some Triticeae species.
    Vershinin AV; Alkhimova EG; Heslop-Harrison JS
    Chromosome Res; 1996 Nov; 4(7):517-25. PubMed ID: 8939363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of rye B-chromosome structure using fluorescence in situ hybridization (FISH).
    Wilkes TM; Francki MG; Langridge P; Karp A; Jones RN; Forster JW
    Chromosome Res; 1995 Dec; 3(8):466-72. PubMed ID: 8581298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructing an alternative wheat karyotype using barley genomic DNA.
    Icsó D; Molnár-Láng M; Linc G
    J Appl Genet; 2015 Feb; 56(1):45-8. PubMed ID: 25027628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping and organization of highly-repeated DNA sequences by means of simultaneous and sequential FISH and C-banding in 6x-triticale.
    Cuadrado A; Jouve N
    Chromosome Res; 1994 Jul; 2(4):331-8. PubMed ID: 7921649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CPD staining: an effective technique for detection of NORs and other GC-rich chromosomal regions in plants.
    She CW; Liu JY; Song YC
    Biotech Histochem; 2006; 81(1):13-21. PubMed ID: 16760123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Cytogenetics in Four Leptodactylus Species (Amphibia, Anura, Leptodactylidae): Evidence of Inner Chromosomal Diversification in Highly Conserved Karyotypes.
    da Silva DS; da Silva Filho HF; Cioffi MB; de Oliveira EHC; Gomes AJB
    Cytogenet Genome Res; 2021; 161(1-2):52-62. PubMed ID: 33887732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Karyotype analysis of Lilium longiflorum and Lilium rubellum by chromosome banding and fluorescence in situ hybridisation.
    Lim KB; Wennekes J; de Jong JH; Jacobsen E; van Tuyl JM
    Genome; 2001 Oct; 44(5):911-8. PubMed ID: 11681616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Production of wheat-rye substitution lines and identification of chromosome composition of karyotypes using C-banding, GISH, and SSR markers].
    Silkova OG; Dobrovol'skaia OB; Dubovets NI; Adonina IG; Kravtsova LA; Roder MS; Salina EA; Shchapova AI; Shumnyĭ VK
    Genetika; 2006 Jun; 42(6):793-802. PubMed ID: 16871784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary dynamics and chromosomal distribution of repetitive sequences on chromosomes of Aegilops speltoides revealed by genomic in situ hybridization.
    Belyayev A; Raskina O; Nevo E
    Heredity (Edinb); 2001 Jun; 86(Pt 6):738-42. PubMed ID: 11595054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Karyotype analysis of four Vicia species using in situ hybridization with repetitive sequences.
    Navrátilová A; Neumann P; Macas J
    Ann Bot; 2003 Jun; 91(7):921-6. PubMed ID: 12770847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Karyotype analysis of eight cultivated Allium species.
    Maragheh FP; Janus D; Senderowicz M; Haliloglu K; Kolano B
    J Appl Genet; 2019 Feb; 60(1):1-11. PubMed ID: 30353472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tandem repeats of Allium fistulosum associated with major chromosomal landmarks.
    Kirov IV; Kiseleva AV; Van Laere K; Van Roy N; Khrustaleva LI
    Mol Genet Genomics; 2017 Apr; 292(2):453-464. PubMed ID: 28150039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytogenetics for the model system Arabidopsis thaliana.
    Fransz P; Armstrong S; Alonso-Blanco C; Fischer TC; Torres-Ruiz RA; Jones G
    Plant J; 1998 Mar; 13(6):867-76. PubMed ID: 9681023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple repetitive DNA sequences in the paracentromeric regions of Arabidopsis thaliana L.
    Brandes A; Thompson H; Dean C; Heslop-Harrison JS
    Chromosome Res; 1997 Jun; 5(4):238-46. PubMed ID: 9244451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.