These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11448045)

  • 21. Differences in characteristics of pellets prepared by different pelletization methods.
    Häring A; Vetchý D; Janovská L; Krejcová K; Rabisková M
    Drug Dev Ind Pharm; 2008 Mar; 34(3):289-96. PubMed ID: 18363144
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of Ceolus™ microcrystalline cellulose grades for the direct compression of enteric-coated pellets.
    Kucera SU; DiNunzio JC; Kaneko N; McGinity JW
    Drug Dev Ind Pharm; 2012 Mar; 38(3):341-50. PubMed ID: 21870908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of ethylcellulose and its pseudolatex (Surelease) in preparation of matrix pellets of theophylline using extrusion-spheronization.
    Garekani HA; Dolatabadi R; Akhgari A; Abbaspour MR; Sadeghi F
    Iran J Basic Med Sci; 2017 Jan; 20(1):9-16. PubMed ID: 28133518
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of drug release by incorporation of sorbitol or mannitol in microcrystalline-cellulose-based pellets prepared by extrusion-spheronization.
    Goyanes A; Souto C; Martínez-Pacheco R
    Pharm Dev Technol; 2010 Dec; 15(6):626-35. PubMed ID: 20148708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of spherical pellets by a hot-melt extrusion and spheronization process.
    Young CR; Koleng JJ; McGinity JW
    Int J Pharm; 2002 Aug; 242(1-2):87-92. PubMed ID: 12176229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of the degree of polymerization on the behavior of cellulose during homogenization and extrusion/spheronization.
    Kleinebudde P; Jumaa M; El Saleh F
    AAPS PharmSci; 2000; 2(3):E21. PubMed ID: 11741237
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Properties of drug-containing spherical pellets produced by a hot-melt extrusion and spheronization process.
    Young CR; Koleng JJ; McGinity JW
    J Microencapsul; 2003; 20(5):613-25. PubMed ID: 12909545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extrusion-spheronization manufacture of Gelucire matrix beads.
    Montoussé C; Pruvost M; Rodriguez F; Brossard C
    Drug Dev Ind Pharm; 1999 Jan; 25(1):75-80. PubMed ID: 10028421
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formulation of ranitidine pellets by extrusion-spheronization with little or no microcrystalline cellulose.
    Basit AW; Newton JM; Lacey LF
    Pharm Dev Technol; 1999; 4(4):499-505. PubMed ID: 10578503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Eudraginated polymer blends: a potential oral controlled drug delivery system for theophylline.
    Emeje M; John-Africa L; Isimi Y; Kunle O; Ofoefule S
    Acta Pharm; 2012 Mar; 62(1):71-82. PubMed ID: 22472450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alginate-based pellets prepared by extrusion/spheronization: effect of the amount and type of sodium alginate and calcium salts.
    Sriamornsak P; Nunthanid J; Luangtana-anan M; Weerapol Y; Puttipipatkhachorn S
    Eur J Pharm Biopharm; 2008 May; 69(1):274-84. PubMed ID: 17962003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microstructural and drug release properties of oven-dried and of slowly or fast frozen freeze-dried MCC-Carbopol pellets.
    Gómez-Carracedo A; Souto C; Martínez-Pacheco R; Concheiro A; Gómez-Amoza JL
    Eur J Pharm Biopharm; 2007 Aug; 67(1):236-45. PubMed ID: 17317125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compression of controlled-release pellets produced by a hot-melt extrusion and spheronization process.
    Young CR; Dietzsch C; McGinity JW
    Pharm Dev Technol; 2005; 10(1):133-9. PubMed ID: 15776821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of fine particle ethylcellulose as the diluent in the production of pellets by extrusion-spheronization.
    Mallipeddi R; Saripella KK; Neau SH
    Saudi Pharm J; 2014 Sep; 22(4):360-72. PubMed ID: 25161381
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of Carbopol 71G-NF on the release of dextromethorphan hydrobromide from extended-release matrix tablets.
    Fayed MH; Mahrous GM; Ibrahim MA; Sakr A
    Pharm Dev Technol; 2013; 18(5):971-81. PubMed ID: 21639691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drug release mechanism from a microcrystalline cellulose pellet system.
    O'Connor RE; Schwartz JB
    Pharm Res; 1993 Mar; 10(3):356-61. PubMed ID: 8464807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physicochemical characterization and mechanisms of release of theophylline from melt-extruded dosage forms based on a methacrylic acid copolymer.
    Young CR; Dietzsch C; Cerea M; Farrell T; Fegely KA; Rajabi-Siahboomi A; McGinity JW
    Int J Pharm; 2005 Sep; 301(1-2):112-20. PubMed ID: 16055285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interpolymer complexation between copovidone and carbopol and its effect on drug release from matrix tablets.
    Zhang F; Meng F; Wang ZY; Na W
    Drug Dev Ind Pharm; 2017 Feb; 43(2):190-203. PubMed ID: 27599027
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In-vitro and in-vivo evaluation of enteric-coated starch-based pellets prepared via extrusion/spheronisation.
    Dukić-Ott A; De Beer T; Remon JP; Baeyens W; Foreman P; Vervaet C
    Eur J Pharm Biopharm; 2008 Sep; 70(1):302-12. PubMed ID: 18579353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of chitosan-alginate as alternative pelletization aid to microcrystalline cellulose in extrusion/spheronization.
    Charoenthai N; Kleinebudde P; Puttipipatkhachorn S
    J Pharm Sci; 2007 Sep; 96(9):2469-84. PubMed ID: 17286294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.