These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 11448229)

  • 21. Design of iron chelators: syntheses and iron (III) complexing abilities of tripodal tris-bidentate ligands.
    d'Hardemare Adu M; Torelli S; Serratrice G; Pierre JL
    Biometals; 2006 Aug; 19(4):349-66. PubMed ID: 16841245
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Desazadesmethyldesferrithiocin analogues as orally effective iron chelators.
    Bergeron RJ; Wiegand J; Weimar WR; Vinson JR; Bussenius J; Yao GW; McManis JS
    J Med Chem; 1999 Jan; 42(1):95-108. PubMed ID: 9888836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Artificial siderophores. 1. Synthesis and microbial iron transport capabilities.
    Lee BH; Miller MJ; Prody CA; Neilands JB
    J Med Chem; 1985 Mar; 28(3):317-23. PubMed ID: 3156248
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New synthetic siderophores and their beta-lactam conjugates based on diamino acids and dipeptides.
    Wittmann S; Schnabelrauch M; Scherlitz-Hofmann I; Möllmann U; Ankel-Fuchs D; Heinisch L
    Bioorg Med Chem; 2002 Jun; 10(6):1659-70. PubMed ID: 11937324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increase in spermine content coordinated with siderophore production in Paracoccus denitrificans.
    Bergeron RJ; Weimar WR
    J Bacteriol; 1991 Apr; 173(7):2238-43. PubMed ID: 1826103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New synthetic catecholate-type siderophores with triamine backbone.
    Heinisch L; Gebhardt P; Heidersbach R; Reissbrodt R; Möllmann U
    Biometals; 2002 Jun; 15(2):133-44. PubMed ID: 12046921
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polyamine-vectored iron chelators: the role of charge.
    Bergeron RJ; Bharti N; Wiegand J; McManis JS; Yao H; Prokai L
    J Med Chem; 2005 Jun; 48(12):4120-37. PubMed ID: 15943485
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacterial siderophores: synthesis and biological activities of novel pyochelin analogues.
    Zamri A; Schalk IJ; Pattus F; Abdallah MA
    Bioorg Med Chem Lett; 2003 Mar; 13(6):1147-50. PubMed ID: 12643931
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Agrobactin, a siderophore from Agrobacterium tumefaciens.
    Ong SA; Peterson T; Neilands JB
    J Biol Chem; 1979 Mar; 254(6):1860-5. PubMed ID: 33987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial siderophores and their potential applications: a review.
    Saha M; Sarkar S; Sarkar B; Sharma BK; Bhattacharjee S; Tribedi P
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):3984-99. PubMed ID: 25758420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and siderophore activity of albomycin-like peptides derived from N5-acetyl-N5-hydroxy-L-ornithine.
    Dolence EK; Lin CE; Miller MJ; Payne SM
    J Med Chem; 1991 Mar; 34(3):956-68. PubMed ID: 1825849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diphenyl-benzo[1,3]dioxole-4-carboxylic acid pentafluorophenyl ester: a convenient catechol precursor in the synthesis of siderophore vectors suitable for antibiotic Trojan horse strategies.
    Baco E; Hoegy F; Schalk IJ; Mislin GL
    Org Biomol Chem; 2014 Feb; 12(5):749-57. PubMed ID: 24305839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Iron transport-mediated drug delivery: practical syntheses and in vitro antibacterial studies of tris-catecholate siderophore-aminopenicillin conjugates reveals selectively potent antipseudomonal activity.
    Ji C; Miller PA; Miller MJ
    J Am Chem Soc; 2012 Jun; 134(24):9898-901. PubMed ID: 22656303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and biological activity of tris- and tetrakiscatecholate siderophores based on poly-aza alkanoic acids or alkylbenzoic acids and their conjugates with beta-lactam antibiotics.
    Heinisch L; Wittmann S; Stoiber T; Scherlitz-Hofmann I; Ankel-Fuchs D; Möllmann U
    Arzneimittelforschung; 2003; 53(3):188-95. PubMed ID: 12705174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stereochemical aspects of iron transport in Mycelia sterilia EP-76.
    Adjimani JP; Emery T
    J Bacteriol; 1988 Mar; 170(3):1377-9. PubMed ID: 2963807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of two 3,5-disubstituted sulfonamide catechol ligands and evaluation of their iron(III) complexes for use as MRI contrast agents.
    Schwert DD; Richardson N; Ji G; Radüchel B; Ebert W; Heffner PE; Keck R; Davies JA
    J Med Chem; 2005 Nov; 48(23):7482-5. PubMed ID: 16279808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid release of iron from ferritin by siderophores.
    Tidmarsh GF; Klebba PE; Rosenberg LT
    J Inorg Biochem; 1983 Apr; 18(2):161-8. PubMed ID: 6222161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trishydroxamates and triscatecholates based on monosaccharides and myo-inositol as artificial siderophores.
    Heggemann S; Möllmann U; Gebhardt P; Heinisch L
    Biometals; 2003 Dec; 16(4):539-51. PubMed ID: 12779239
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents.
    Roosenberg JM; Lin YM; Lu Y; Miller MJ
    Curr Med Chem; 2000 Feb; 7(2):159-97. PubMed ID: 10637361
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydroxamate siderophore mediated iron uptake in E. coli: stereospecific recognition of ferric rhodotorulic acid.
    Matzanke BF; Müller GI; Raymond KN
    Biochem Biophys Res Commun; 1984 Jun; 121(3):922-30. PubMed ID: 6234892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.