These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. Mammalian siderophores, siderophore-binding lipocalins, and the labile iron pool. Correnti C; Strong RK J Biol Chem; 2012 Apr; 287(17):13524-31. PubMed ID: 22389496 [TBL] [Abstract][Full Text] [Related]
63. Synthesis and biological evaluation of naphthyldesferrithiocin iron chelators. Bergeron RJ; Wiegand J; Wollenweber M; McManis JS; Algee SE; Ratliff-Thompson K J Med Chem; 1996 Apr; 39(8):1575-81. PubMed ID: 8648596 [TBL] [Abstract][Full Text] [Related]
64. N5-acetyl-N5-hydroxy-L-ornithine-derived siderophore-carbacephalosporin beta-lactam conjugates: iron transport mediated drug delivery. Dolence EK; Minnick AA; Miller MJ J Med Chem; 1990 Feb; 33(2):461-4. PubMed ID: 2137180 [No Abstract] [Full Text] [Related]
65. The origin of the differences in (R)- and (S)-desmethyldesferrithiocin. Iron-clearing properties. Bergeron RJ; Wiegand J; Ratliff-Thompson K; Weimar WR Ann N Y Acad Sci; 1998 Jun; 850():202-16. PubMed ID: 9668541 [TBL] [Abstract][Full Text] [Related]
66. Siderophore (from Feng X; Jiang S; Zhang F; Wang R; Zhao Y; Zeng M Mar Drugs; 2019 Dec; 17(12):. PubMed ID: 31888208 [TBL] [Abstract][Full Text] [Related]
67. Synthesis and siderophore and antibacterial activity of N5-acetyl-N5-hydroxy-L-ornithine-derived siderophore-beta-lactam conjugates: iron-transport-mediated drug delivery. Dolence EK; Minnick AA; Lin CE; Miller MJ; Payne SM J Med Chem; 1991 Mar; 34(3):968-78. PubMed ID: 1825850 [TBL] [Abstract][Full Text] [Related]
68. Relationship of siderophore-mediated iron assimilation to virulence in crown gall disease. Leong SA; Neilands JB J Bacteriol; 1981 Aug; 147(2):482-91. PubMed ID: 6455414 [TBL] [Abstract][Full Text] [Related]
69. An overview of siderophores for iron acquisition in microorganisms living in the extreme. De Serrano LO; Camper AK; Richards AM Biometals; 2016 Aug; 29(4):551-71. PubMed ID: 27457587 [TBL] [Abstract][Full Text] [Related]
70. Siderophores: From natural roles to potential applications. Albelda-Berenguer M; Monachon M; Joseph E Adv Appl Microbiol; 2019; 106():193-225. PubMed ID: 30798803 [TBL] [Abstract][Full Text] [Related]
71. Siderophores as molecular tools in medical and environmental applications. Kurth C; Kage H; Nett M Org Biomol Chem; 2016 Sep; 14(35):8212-27. PubMed ID: 27492756 [TBL] [Abstract][Full Text] [Related]
72. Ferrichrome Has Found Its Match: Biomimetic Analogues with Diversified Activity Map Discrete Microbial Targets. Besserglick J; Olshvang E; Szebesczyk A; Englander J; Levinson D; Hadar Y; Gumienna-Kontecka E; Shanzer A Chemistry; 2017 Sep; 23(53):13181-13191. PubMed ID: 28708324 [TBL] [Abstract][Full Text] [Related]
73. Utilization of exogenous siderophores and natural catechols by Listeria monocytogenes. Simon N; Coulanges V; Andre P; Vidon DJ Appl Environ Microbiol; 1995 Apr; 61(4):1643-5. PubMed ID: 7747980 [TBL] [Abstract][Full Text] [Related]
74. Iron-limited growth and kinetics of iron uptake in Magnetospirillum gryphiswaldense. Schüler D; Baeuerlein E Arch Microbiol; 1996 Nov; 166(5):301-7. PubMed ID: 8929275 [TBL] [Abstract][Full Text] [Related]
75. The structure-activity relationship of ferric pyoverdine bound to its outer membrane transporter: implications for the mechanism of iron uptake. Schons V; Atkinson RA; Dugave C; Graff R; Mislin GL; Rochet L; Hennard C; Kieffer B; Abdallah MA; Schalk IJ Biochemistry; 2005 Nov; 44(43):14069-79. PubMed ID: 16245923 [TBL] [Abstract][Full Text] [Related]
76. Conjugates of desferrioxamine B (DFOB) with derivatives of adamantane or with orally available chelators as potential agents for treating iron overload. Liu J; Obando D; Schipanski LG; Groebler LK; Witting PK; Kalinowski DS; Richardson DR; Codd R J Med Chem; 2010 Feb; 53(3):1370-82. PubMed ID: 20041672 [TBL] [Abstract][Full Text] [Related]
77. Exogenous siderophore-mediated iron uptake in Pseudomonas aeruginosa: possible involvement of porin OprF in iron translocation. Meyer JM J Gen Microbiol; 1992 May; 138(5):951-8. PubMed ID: 1322952 [TBL] [Abstract][Full Text] [Related]
78. Structural Basis for Xenosiderophore Utilization by the Human Pathogen Staphylococcus aureus. Endicott NP; Lee E; Wencewicz TA ACS Infect Dis; 2017 Jul; 3(7):542-553. PubMed ID: 28505405 [TBL] [Abstract][Full Text] [Related]
79. Artificial siderophores. 2. Syntheses of trihydroxamate analogues of rhodotorulic acid and their biological iron transport capabilities in Escherichia coli. Lee BH; Miller MJ; Prody CA; Neilands JB J Med Chem; 1985 Mar; 28(3):323-7. PubMed ID: 3156249 [TBL] [Abstract][Full Text] [Related]
80. Synthesis, siderophore activity and iron(III) chelation chemistry of a novel mono-hydroxamate, bis-catecholate siderophore mimic: N(alpha),-N(epsilon)-Bis[2,3-dihydroxybenzoyl]-l-lysyl-(gamma-N-methyl-N-hydroxyamido)-L-glutamic acid. Mies KA; Gebhardt P; Möllmann U; Crumbliss AL J Inorg Biochem; 2008 Apr; 102(4):850-61. PubMed ID: 18272225 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]