These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 11448521)

  • 1. Kinetic analysis of enzyme systems with suicide substrate in the presence of a reversible, uncompetitive inhibitor.
    Moruno-Dávila MA; Solo CG; García-Moreno M; García-Cánovas F; Varón R
    Biosystems; 2001 Jun; 61(1):5-14. PubMed ID: 11448521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of enzyme systems with suicide substrate in the presence of a reversible competitive inhibitor, tested by simulated progress curves.
    Moruno-Dávila MA; Garrido-del Solo C; García-Moreno M; Havsteen BH; Garcia-Sevilla F; Garcia-Cánovas F; Varón R
    Int J Biochem Cell Biol; 2001 Feb; 33(2):181-91. PubMed ID: 11240375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of enzyme systems with unstable suicide substrates.
    Varón R; Garrido-del Solo C; García-Moreno M; García-Cánovas F; Moya-García G; Vidal de Labra J; Havsteen BH
    Biosystems; 1998 Aug; 47(3):177-92. PubMed ID: 9793629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic analysis of the general modifier mechanism of Botts and Morales involving a suicide substrate.
    Varón R; García-Cánovas F; García-Moreno M; Valero E; Molina-Alarcón M; García-Meseguers MJ; Vidal de Labra JA; Garrido-del Sol C
    J Theor Biol; 2002 Oct; 218(3):355-74. PubMed ID: 12381436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The kinetic effect of product instability in a Michaelis-Menten mechanism with competitive inhibition.
    Garrido-del Solo C; Moruno MA; Havsteen BH; Castellanos RV
    Biosystems; 2000; 56(2-3):75-82. PubMed ID: 10880856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic study of an enzyme-catalysed reaction in the presence of novel irreversible-type inhibitors that react with the product of enzymatic catalysis.
    Navarro-Lozano MJ; Valero E; Varon R; Garcia-Carmona F
    Bull Math Biol; 1995 Jan; 57(1):157-68. PubMed ID: 7833851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic analysis of a Michaelis-Menten mechanism in which the enzyme is unstable.
    Garrido-del Solo C; García-Cánovas F; Havsteen BH; Varón-Castellanos R
    Biochem J; 1993 Sep; 294 ( Pt 2)(Pt 2):459-64. PubMed ID: 8373361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analysis of the kinetics of enzymatic systems with unstable species.
    Garrido-del Solo C; Havsteen BH; Varon R
    Biosystems; 1996; 38(1):75-86. PubMed ID: 8833750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On a nonelementary progress curve equation and its application in enzyme kinetics.
    Golicnik M
    J Chem Inf Comput Sci; 2002; 42(2):157-61. PubMed ID: 11911683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis of enzyme reactions with slow-binding inhibition.
    Garrido-del Solo C; García-Cánovas F; Havesteen BH; Castellanos RV
    Biosystems; 1999 Sep; 51(3):169-80. PubMed ID: 10530756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Final phase of enzyme reactions following a Michaelis-Menten mechanisms in which the free enzyme and/or the enzyme-substrate complex are unstable.
    Varón R; Garrido del Solo C; García-Moreno M; Sánchez-Gracia A; García-Cánovas F
    Biol Chem Hoppe Seyler; 1994 Jan; 375(1):35-42. PubMed ID: 8003255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A generalized theoretical treatment of the kinetics of an enzyme-catalysed reaction in the presence of an unstable irreversible modifier.
    Topham CM
    J Theor Biol; 1990 Aug; 145(4):547-72. PubMed ID: 2246902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of inhibitor Ki and inhibitor type from the concentration of inhibitor for 50% inhibition for Michaelis-Menten enzymes.
    Brandt RB; Laux JE; Yates SW
    Biochem Med Metab Biol; 1987 Jun; 37(3):344-9. PubMed ID: 3606895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two rules of enzyme kinetics for reversible Michaelis-Menten mechanisms.
    Keleti T
    FEBS Lett; 1986 Nov; 208(1):109-12. PubMed ID: 3770204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The analysis of enzyme progress curves by numerical differentiation, including competitive product inhibition and enzyme reactivation.
    Koerber SC; Fink AL
    Anal Biochem; 1987 Aug; 165(1):75-87. PubMed ID: 3120622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress curves of reactions catalyzed by unstable enzymes. A theoretical approach.
    Duggleby RG
    J Theor Biol; 1986 Nov; 123(1):67-80. PubMed ID: 3626585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple generalized equation for the analysis of multiple inhibitions of Michaelis-Menten kinetic systems.
    Chou TC; Talalay P
    J Biol Chem; 1977 Sep; 252(18):6438-42. PubMed ID: 893418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme inhibition studies by integrated Michaelis-Menten equation considering simultaneous presence of two inhibitors when one of them is a reaction product.
    Bezerra RM; Pinto PA; Fraga I; Dias AA
    Comput Methods Programs Biomed; 2016 Mar; 125():2-7. PubMed ID: 26777432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General mathematical formula for near equilibrium relaxation kinetics of basic enzyme reactions and its applications to find conformational selection steps.
    Egawa T; Callender R
    Math Biosci; 2019 Jul; 313():61-70. PubMed ID: 30935841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Methods for Modeling Enzyme Kinetics.
    Yadav J; Korzekwa K; Nagar S
    Methods Mol Biol; 2021; 2342():147-168. PubMed ID: 34272694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.