These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 11448765)
1. Compatibility of a wild type and its genetically modified Sinorhizobium strain with two mycorrhizal fungi on Medicago species as affected by drought stress. Vázquez MM; Azcón R; Barea JM Plant Sci; 2001 Jul; 161(2):347-358. PubMed ID: 11448765 [TBL] [Abstract][Full Text] [Related]
2. Effects of arbuscular-mycorrhizal glomus species on drought tolerance: physiological and nutritional plant responses. Ruiz-Lozano JM; Azcon R; Gomez M Appl Environ Microbiol; 1995 Feb; 61(2):456-60. PubMed ID: 16534929 [TBL] [Abstract][Full Text] [Related]
3. The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. Toro M; Azcón R; Barea JM New Phytol; 1998 Feb; 138(2):265-273. PubMed ID: 33863097 [TBL] [Abstract][Full Text] [Related]
4. Growth promoting effect of two Sinorhizobium meliloti strains (a wild type and its genetically modified derivative) on a non-legume plant species in specific interaction with two arbuscular mycorrhizal fungi. Galleguillos C; Aguirre C; Miguel Barea J ; Azcón R Plant Sci; 2000 Oct; 159(1):57-63. PubMed ID: 11011093 [TBL] [Abstract][Full Text] [Related]
5. Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. Ortiz N; Armada E; Duque E; Roldán A; Azcón R J Plant Physiol; 2015 Feb; 174():87-96. PubMed ID: 25462971 [TBL] [Abstract][Full Text] [Related]
6. Insights on the Impact of Arbuscular Mycorrhizal Symbiosis on Wang S; Ren Y; Han L; Nie Y; Zhang S; Xie X; Hu W; Chen H; Tang M Microbiol Spectr; 2023 Mar; 11(2):e0438122. PubMed ID: 36927000 [TBL] [Abstract][Full Text] [Related]
7. Regulation of Plant Growth, Photosynthesis, Antioxidation and Osmosis by an Arbuscular Mycorrhizal Fungus in Watermelon Seedlings under Well-Watered and Drought Conditions. Mo Y; Wang Y; Yang R; Zheng J; Liu C; Li H; Ma J; Zhang Y; Wei C; Zhang X Front Plant Sci; 2016; 7():644. PubMed ID: 27242845 [TBL] [Abstract][Full Text] [Related]
8. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. Ruíz-Sánchez M; Armada E; Muñoz Y; García de Salamone IE; Aroca R; Ruíz-Lozano JM; Azcón R J Plant Physiol; 2011 Jul; 168(10):1031-7. PubMed ID: 21377754 [TBL] [Abstract][Full Text] [Related]
9. Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus Species. Marulanda A; Porcel R; Barea JM; Azcón R Microb Ecol; 2007 Oct; 54(3):543-52. PubMed ID: 17431706 [TBL] [Abstract][Full Text] [Related]
10. Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Pinior A; Grunewaldt-Stöcker G; von Alten H; Strasser RJ Mycorrhiza; 2005 Nov; 15(8):596-605. PubMed ID: 16133256 [TBL] [Abstract][Full Text] [Related]
11. An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Marulanda A; Barea JM; Azcón R Microb Ecol; 2006 Nov; 52(4):670-8. PubMed ID: 17075734 [TBL] [Abstract][Full Text] [Related]
12. Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Vivas A; Marulanda A; Ruiz-Lozano JM; Barea JM; Azcón R Mycorrhiza; 2003 Oct; 13(5):249-56. PubMed ID: 14593518 [TBL] [Abstract][Full Text] [Related]
13. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Al-Karaki G; McMichael B; Zak J Mycorrhiza; 2004 Aug; 14(4):263-9. PubMed ID: 12942358 [TBL] [Abstract][Full Text] [Related]
14. Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. Bianco C; Defez R J Exp Bot; 2009; 60(11):3097-107. PubMed ID: 19436044 [TBL] [Abstract][Full Text] [Related]
15. Enhancing plant resilience: arbuscular mycorrhizal fungi's role in alleviating drought stress in vegetation concrete. Guo S; Xia L; Xia D; Li M; Xu W; Liu L Front Plant Sci; 2024; 15():1401050. PubMed ID: 38974980 [TBL] [Abstract][Full Text] [Related]
16. [Effects of arbuscular mycorrhizal fungi on plant growth and osmotic adjustment matter content of trifoliate orange seedling under water stress]. Wu QS; Xia RX Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Oct; 30(5):583-8. PubMed ID: 15627714 [TBL] [Abstract][Full Text] [Related]
17. Distinct impact of arbuscular mycorrhizal isolates on tomato plant tolerance to drought combined with chronic and acute heat stress. Duc NH; Szentpéteri V; Mayer Z; Posta K Plant Physiol Biochem; 2023 Aug; 201():107892. PubMed ID: 37490823 [TBL] [Abstract][Full Text] [Related]
18. [Effect of AM fungi on water and nutrition status of corn plants under salt stress]. Feng G; Li X; Zhang F; Li S Ying Yong Sheng Tai Xue Bao; 2000 Aug; 11(4):595-8. PubMed ID: 11767685 [TBL] [Abstract][Full Text] [Related]
19. Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Armada E; Azcón R; López-Castillo OM; Calvo-Polanco M; Ruiz-Lozano JM Plant Physiol Biochem; 2015 May; 90():64-74. PubMed ID: 25813343 [TBL] [Abstract][Full Text] [Related]
20. Tolerance of Mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. Abbaspour H; Saeidi-Sar S; Afshari H; Abdel-Wahhab MA J Plant Physiol; 2012 May; 169(7):704-9. PubMed ID: 22418429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]