BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 11448786)

  • 1. Cystic fibrosis: the 'bicarbonate before chloride' hypothesis.
    Wine JJ
    Curr Biol; 2001 Jun; 11(12):R463-6. PubMed ID: 11448786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation of sweat chloride concentration with classes of the cystic fibrosis transmembrane conductance regulator gene mutations.
    Wilschanski M; Zielenski J; Markiewicz D; Tsui LC; Corey M; Levison H; Durie PR
    J Pediatr; 1995 Nov; 127(5):705-10. PubMed ID: 7472820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sweat chloride concentration in cystic fibrosis patients with cystic fibrosis trans-membrane conductance regulator 11234V mutation.
    Al-Mendalawi MD; Abdul-Wahab A; Janahi IA; Abdel-Rahman MO
    Saudi Med J; 2010 Mar; 31(3):339-40; author reply 340. PubMed ID: 20231949
    [No Abstract]   [Full Text] [Related]  

  • 4. Selective activation of cystic fibrosis transmembrane conductance regulator Cl- and HCO3- conductances.
    Reddy MM; Quinton PM
    JOP; 2001 Jul; 2(4 Suppl):212-8. PubMed ID: 11875262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sweat chloride and immunoreactive trypsinogen in infants carrying two
    Castellani C; Tridello G; Tamanini A; Assael BM
    Arch Dis Child; 2017 Jul; 102(7):644-646. PubMed ID: 26755536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of sweat chloride concentration with genotypes in cystic fibrosis patients in Saguenay Lac-Saint-Jean, Quebec, Canada.
    De Braekeleer M; Allard C; Leblanc JP; Aubin G; Simard F
    Clin Biochem; 1998 Feb; 31(1):33-6. PubMed ID: 9559222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of direct bicarbonate transport by the CFTR anion channel.
    Tang L; Fatehi M; Linsdell P
    J Cyst Fibros; 2009 Mar; 8(2):115-21. PubMed ID: 19019741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CFTR-dependent chloride efflux in cystic fibrosis mononuclear cells is increased by ivacaftor therapy.
    Guerra L; D'Oria S; Favia M; Castellani S; Santostasi T; Polizzi AM; Mariggiò MA; Gallo C; Casavola V; Montemurro P; Leonetti G; Manca A; Conese M
    Pediatr Pulmonol; 2017 Jul; 52(7):900-908. PubMed ID: 28445004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A molecular mechanism for aberrant CFTR-dependent HCO(3)(-) transport in cystic fibrosis.
    Ko SB; Shcheynikov N; Choi JY; Luo X; Ishibashi K; Thomas PJ; Kim JY; Kim KH; Lee MG; Naruse S; Muallem S
    EMBO J; 2002 Nov; 21(21):5662-72. PubMed ID: 12411484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bicarbonate Transport in Cystic Fibrosis and Pancreatitis.
    Angyal D; Bijvelds MJC; Bruno MJ; Peppelenbosch MP; de Jonge HR
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mutation in the cystic fibrosis transmembrane conductance regulator gene associated with elevated sweat chloride concentrations in the absence of cystic fibrosis.
    Mickle JE; Macek M; Fulmer-Smentek SB; Egan MM; Schwiebert E; Guggino W; Moss R; Cutting GR
    Hum Mol Genet; 1998 Apr; 7(4):729-35. PubMed ID: 9499426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bicarbonate secretion and CFTR: continuing the paradigm shift.
    Ulrich CD
    Gastroenterology; 2000 Jun; 118(6):1258-61. PubMed ID: 10833500
    [No Abstract]   [Full Text] [Related]  

  • 13. Aberrant CFTR-dependent HCO3- transport in mutations associated with cystic fibrosis.
    Choi JY; Muallem D; Kiselyov K; Lee MG; Thomas PJ; Muallem S
    Nature; 2001 Mar; 410(6824):94-7. PubMed ID: 11242048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cystic fibrosis transmembrane conductance regulator currents in guinea pig pancreatic duct cells: inhibition by bicarbonate ions.
    O'Reilly CM; Winpenny JP; Argent BE; Gray MA
    Gastroenterology; 2000 Jun; 118(6):1187-96. PubMed ID: 10833494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CFTR pharmacology.
    Zegarra-Moran O; Galietta LJ
    Cell Mol Life Sci; 2017 Jan; 74(1):117-128. PubMed ID: 27704174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bicarbonate in cystic fibrosis.
    Kunzelmann K; Schreiber R; Hadorn HB
    J Cyst Fibros; 2017 Nov; 16(6):653-662. PubMed ID: 28732801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gating of CFTR by the STAS domain of SLC26 transporters.
    Ko SB; Zeng W; Dorwart MR; Luo X; Kim KH; Millen L; Goto H; Naruse S; Soyombo A; Thomas PJ; Muallem S
    Nat Cell Biol; 2004 Apr; 6(4):343-50. PubMed ID: 15048129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of transport abnormalities in duodenal mucosa and duodenal enterocytes from patients with cystic fibrosis.
    Pratha VS; Hogan DL; Martensson BA; Bernard J; Zhou R; Isenberg JI
    Gastroenterology; 2000 Jun; 118(6):1051-60. PubMed ID: 10833480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of sweat chloride concentration at time of diagnosis and CFTR genotype with mortality and cystic fibrosis phenotype.
    McKone EF; Velentgas P; Swenson AJ; Goss CH
    J Cyst Fibros; 2015 Sep; 14(5):580-6. PubMed ID: 25660278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sweat chloride testing in infants identified as heterozygote carriers by newborn screening.
    Soultan ZN; Foster MM; Newman NB; Anbar RD
    J Pediatr; 2008 Dec; 153(6):857-9. PubMed ID: 19014821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.