These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11449567)

  • 1. Computational analysis of Thr203 isomerization in green fluorescent protein.
    Warren A; Zimmer M
    J Mol Graph Model; 2001; 19(3-4):297-303. PubMed ID: 11449567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular modeling of green fluorescent protein: structural effects of chromophore deprotonation.
    Patnaik SS; Trohalaki S; Pachter R
    Biopolymers; 2004 Dec; 75(6):441-52. PubMed ID: 15497152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-principles characterization of the energy landscape and optical spectra of green fluorescent protein along the A→I→B proton transfer route.
    Grigorenko BL; Nemukhin AV; Polyakov IV; Morozov DI; Krylov AI
    J Am Chem Soc; 2013 Aug; 135(31):11541-9. PubMed ID: 23837665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-dependent density-functional approach for biological chromophores: the case of the green fluorescent protein.
    Marques MA; López X; Varsano D; Castro A; Rubio A
    Phys Rev Lett; 2003 Jun; 90(25 Pt 1):258101. PubMed ID: 12857170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiationless decay of red fluorescent protein chromophore models via twisted intramolecular charge-transfer states.
    Olsen S; Smith SC
    J Am Chem Soc; 2007 Feb; 129(7):2054-65. PubMed ID: 17253685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic excitations of the green fluorescent protein chromophore in its protonation states: SAC/SAC-CI study.
    Das AK; Hasegawa JY; Miyahara T; Ehara M; Nakatsuji H
    J Comput Chem; 2003 Sep; 24(12):1421-31. PubMed ID: 12868107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins.
    Verkhusha VV; Chudakov DM; Gurskaya NG; Lukyanov S; Lukyanov KA
    Chem Biol; 2004 Jun; 11(6):845-54. PubMed ID: 15217617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shedding light on the dark and weakly fluorescent states of green fluorescent proteins.
    Weber W; Helms V; McCammon JA; Langhoff PW
    Proc Natl Acad Sci U S A; 1999 May; 96(11):6177-82. PubMed ID: 10339561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cis-trans photoisomerization of fluorescent-protein chromophores.
    Voliani V; Bizzarri R; Nifosì R; Abbruzzetti S; Grandi E; Viappiani C; Beltram F
    J Phys Chem B; 2008 Aug; 112(34):10714-22. PubMed ID: 18671358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein.
    Brejc K; Sixma TK; Kitts PA; Kain SR; Tsien RY; Ormö M; Remington SJ
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2306-11. PubMed ID: 9122190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic control of photoisomerization pathways in proteins.
    Romei MG; Lin CY; Mathews II; Boxer SG
    Science; 2020 Jan; 367(6473):76-79. PubMed ID: 31896714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants.
    Stiel AC; Trowitzsch S; Weber G; Andresen M; Eggeling C; Hell SW; Jakobs S; Wahl MC
    Biochem J; 2007 Feb; 402(1):35-42. PubMed ID: 17117927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refined crystal structures of red and green fluorescent proteins from the button polyp Zoanthus.
    Pletneva N; Pletnev V; Tikhonova T; Pakhomov AA; Popov V; Martynov VI; Wlodawer A; Dauter Z; Pletnev S
    Acta Crystallogr D Biol Crystallogr; 2007 Oct; 63(Pt 10):1082-93. PubMed ID: 17881826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ground state isomerization of a model green fluorescent protein chromophore.
    He X; Bell AF; Tonge PJ
    FEBS Lett; 2003 Aug; 549(1-3):35-8. PubMed ID: 12914920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutagenic stabilization of the photocycle intermediate of green fluorescent protein (GFP).
    Wiehler J; Jung G; Seebacher C; Zumbusch A; Steipe B
    Chembiochem; 2003 Nov; 4(11):1164-71. PubMed ID: 14613107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analysis of the immature form of the GFP homologue DsRed.
    Zaveer MS; Zimmer M
    Bioorg Med Chem Lett; 2003 Nov; 13(22):3919-22. PubMed ID: 14592475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green fluorescent protein variants as ratiometric dual emission pH sensors. 2. Excited-state dynamics.
    McAnaney TB; Park ES; Hanson GT; Remington SJ; Boxer SG
    Biochemistry; 2002 Dec; 41(52):15489-94. PubMed ID: 12501177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation.
    Tubbs JL; Tainer JA; Getzoff ED
    Biochemistry; 2005 Jul; 44(29):9833-40. PubMed ID: 16026155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222.
    van Thor JJ; Gensch T; Hellingwerf KJ; Johnson LN
    Nat Struct Biol; 2002 Jan; 9(1):37-41. PubMed ID: 11740505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trans-cis isomerization is responsible for the red-shifted fluorescence in variants of the red fluorescent protein eqFP611.
    Nienhaus K; Nar H; Heilker R; Wiedenmann J; Nienhaus GU
    J Am Chem Soc; 2008 Sep; 130(38):12578-9. PubMed ID: 18761441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.