These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. [The effect of sodium azide on the thermotolerance of the yeast Saccharomyces cerevisiae and Candida albicans]. Rikhvanov EG; Varakina NN; Rusaleva TM; Rachenko EI; Voĭnikov VK Mikrobiologiia; 2002; 71(6):768-72. PubMed ID: 12526197 [TBL] [Abstract][Full Text] [Related]
5. [The absence of direct relationship between the ability of yeasts to grow at elevated temperatures and their survival after lethal heat shock]. Rikhvanov EG; Varakina NN; Rusaleva TM; Rachenko EI; Voĭnikov VK Mikrobiologiia; 2003; 72(4):476-81. PubMed ID: 14526536 [TBL] [Abstract][Full Text] [Related]
6. Endocytosis and vacuolar morphology in Saccharomyces cerevisiae are altered in response to ethanol stress or heat shock. Meaden PG; Arneborg N; Guldfeldt LU; Siegumfeldt H; Jakobsen M Yeast; 1999 Sep; 15(12):1211-22. PubMed ID: 10487923 [TBL] [Abstract][Full Text] [Related]
7. [Induction of synthesis of Hsp104 of Saccharomyces cerevisiae in heat shock is controlled by mitochondria]. Rikhvanov EG; Rachenko EI; Varakina NN; Rusaleva TM; Borovskiĭ GB; Voĭnikov VK Genetika; 2004 Apr; 40(4):437-44. PubMed ID: 15174275 [TBL] [Abstract][Full Text] [Related]
8. Responses of Saccharomyces cerevisiae to thermal stress. Guyot S; Ferret E; Gervais P Biotechnol Bioeng; 2005 Nov; 92(4):403-9. PubMed ID: 16028292 [TBL] [Abstract][Full Text] [Related]
10. Induction of heat shock proteins and thermotolerance. Piper P Methods Mol Biol; 1996; 53():313-7. PubMed ID: 8924991 [No Abstract] [Full Text] [Related]
11. Do mitochondria regulate the heat-shock response in Saccharomyces cerevisiae? Rikhvanov EG; Varakina NN; Rusaleva TM; Rachenko EI; Knorre DA; Voinikov VK Curr Genet; 2005 Jul; 48(1):44-59. PubMed ID: 15983831 [TBL] [Abstract][Full Text] [Related]
12. [Effect of 2,4-dinitrophenol on stability of a turbidostat yeast culture to heat shock]. Kaliuzhin VA Mikrobiologiia; 1998; 67(4):476-82. PubMed ID: 9785343 [TBL] [Abstract][Full Text] [Related]
18. Understanding the Mechanism of Thermotolerance Distinct From Heat Shock Response Through Proteomic Analysis of Industrial Strains of Saccharomyces cerevisiae. Shui W; Xiong Y; Xiao W; Qi X; Zhang Y; Lin Y; Guo Y; Zhang Z; Wang Q; Ma Y Mol Cell Proteomics; 2015 Jul; 14(7):1885-97. PubMed ID: 25926660 [TBL] [Abstract][Full Text] [Related]
19. Saccharomyces cerevisiae strains from traditional fermentations of Brazilian cachaça: trehalose metabolism, heat and ethanol resistance. Vianna CR; Silva CL; Neves MJ; Rosa CA Antonie Van Leeuwenhoek; 2008; 93(1-2):205-17. PubMed ID: 17701283 [TBL] [Abstract][Full Text] [Related]
20. Heat shock and ethanol stress provoke distinctly different responses in 3'-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae. Izawa S; Kita T; Ikeda K; Inoue Y Biochem J; 2008 Aug; 414(1):111-9. PubMed ID: 18442359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]