BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11450450)

  • 1. [Effect of sodium azide on heat-shock resistance in Saccharomyces cerevisiae and Debaryomyces vanriji yeasts].
    Rikhvanov EG; Varakina NN; Rusaleva TM; Rachenko EI; Kiseleva VA; Voĭnikov VK
    Mikrobiologiia; 2001; 70(3):300-4. PubMed ID: 11450450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of cytochrome oxidase inhibitors on the yeast thermotolerance].
    Rikhvanov EG; Varakina NN; Rusaleva TM; Rachenko EI; Voĭnikov VK
    Mikrobiologiia; 2003; 72(2):174-9. PubMed ID: 12751239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium azide reduces the thermotolerance of respiratively grown yeasts.
    Rikhvanov EG; Varakina NN; Rusaleva TM; Rachenko EI; Voinikov VK
    Curr Microbiol; 2002 Dec; 45(6):394-9. PubMed ID: 12402078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The effect of sodium azide on the thermotolerance of the yeast Saccharomyces cerevisiae and Candida albicans].
    Rikhvanov EG; Varakina NN; Rusaleva TM; Rachenko EI; Voĭnikov VK
    Mikrobiologiia; 2002; 71(6):768-72. PubMed ID: 12526197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The absence of direct relationship between the ability of yeasts to grow at elevated temperatures and their survival after lethal heat shock].
    Rikhvanov EG; Varakina NN; Rusaleva TM; Rachenko EI; Voĭnikov VK
    Mikrobiologiia; 2003; 72(4):476-81. PubMed ID: 14526536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endocytosis and vacuolar morphology in Saccharomyces cerevisiae are altered in response to ethanol stress or heat shock.
    Meaden PG; Arneborg N; Guldfeldt LU; Siegumfeldt H; Jakobsen M
    Yeast; 1999 Sep; 15(12):1211-22. PubMed ID: 10487923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Induction of synthesis of Hsp104 of Saccharomyces cerevisiae in heat shock is controlled by mitochondria].
    Rikhvanov EG; Rachenko EI; Varakina NN; Rusaleva TM; Borovskiĭ GB; Voĭnikov VK
    Genetika; 2004 Apr; 40(4):437-44. PubMed ID: 15174275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of Saccharomyces cerevisiae to thermal stress.
    Guyot S; Ferret E; Gervais P
    Biotechnol Bioeng; 2005 Nov; 92(4):403-9. PubMed ID: 16028292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The effect of sodium malonate on yeast thermotolerance].
    Rikhvanov EG; Varakina NN; Rusaleva TM; Rachenko EI; Voĭnikov VK
    Mikrobiologiia; 2003; 72(5):616-20. PubMed ID: 14679898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of heat shock proteins and thermotolerance.
    Piper P
    Methods Mol Biol; 1996; 53():313-7. PubMed ID: 8924991
    [No Abstract]   [Full Text] [Related]  

  • 11. Do mitochondria regulate the heat-shock response in Saccharomyces cerevisiae?
    Rikhvanov EG; Varakina NN; Rusaleva TM; Rachenko EI; Knorre DA; Voinikov VK
    Curr Genet; 2005 Jul; 48(1):44-59. PubMed ID: 15983831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of 2,4-dinitrophenol on stability of a turbidostat yeast culture to heat shock].
    Kaliuzhin VA
    Mikrobiologiia; 1998; 67(4):476-82. PubMed ID: 9785343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow heat rate increases yeast thermotolerance by maintaining plasma membrane integrity.
    Martínez de Marañón I; Chaudanson N; Joly N; Gervais P
    Biotechnol Bioeng; 1999 Oct; 65(2):176-81. PubMed ID: 10458738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondria-derived oxidative stress induces a heat shock protein response.
    Barrett MJ; Alones V; Wang KX; Phan L; Swerdlow RH
    J Neurosci Res; 2004 Nov; 78(3):420-9. PubMed ID: 15389841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity of the plasma membrane H(+)-ATPase is a key physiological determinant of thermotolerance in Saccharomyces cerevisiae.
    Coote PJ; Jones MV; Seymour IJ; Rowe DL; Ferdinando DP; McArthur AJ; Cole MB
    Microbiology (Reading); 1994 Aug; 140 ( Pt 8)():1881-90. PubMed ID: 7921241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection on knockdown performance in Drosophila melanogaster impacts thermotolerance and heat-shock response differently in females and males.
    Folk DG; Zwollo P; Rand DM; Gilchrist GW
    J Exp Biol; 2006 Oct; 209(Pt 20):3964-73. PubMed ID: 17023590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-Thyroxine induces thermotolerance in yeast.
    Papamichael K; Delitheos B; Mourouzis I; Pantos C; Tiligada E
    Cell Stress Chaperones; 2019 Mar; 24(2):469-473. PubMed ID: 30737613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the Mechanism of Thermotolerance Distinct From Heat Shock Response Through Proteomic Analysis of Industrial Strains of Saccharomyces cerevisiae.
    Shui W; Xiong Y; Xiao W; Qi X; Zhang Y; Lin Y; Guo Y; Zhang Z; Wang Q; Ma Y
    Mol Cell Proteomics; 2015 Jul; 14(7):1885-97. PubMed ID: 25926660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saccharomyces cerevisiae strains from traditional fermentations of Brazilian cachaça: trehalose metabolism, heat and ethanol resistance.
    Vianna CR; Silva CL; Neves MJ; Rosa CA
    Antonie Van Leeuwenhoek; 2008; 93(1-2):205-17. PubMed ID: 17701283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat shock and ethanol stress provoke distinctly different responses in 3'-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae.
    Izawa S; Kita T; Ikeda K; Inoue Y
    Biochem J; 2008 Aug; 414(1):111-9. PubMed ID: 18442359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.