BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11450530)

  • 21. Effects of solvent dehydration on creep resistance of poly(vinyl alcohol) hydrogel.
    Choi J; Bodugoz-Senturk H; Kung HJ; Malhi AS; Muratoglu OK
    Biomaterials; 2007 Feb; 28(5):772-80. PubMed ID: 17070904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The development of artificial articular cartilage--PVA-hydrogel.
    Gu ZQ; Xiao JM; Zhang XH
    Biomed Mater Eng; 1998; 8(2):75-81. PubMed ID: 9830990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unconfined compression properties of a porous poly(vinyl alcohol)-chitosan-based hydrogel after hydration.
    Lee SY; Pereira BP; Yusof N; Selvaratnam L; Yu Z; Abbas AA; Kamarul T
    Acta Biomater; 2009 Jul; 5(6):1919-25. PubMed ID: 19289306
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Poly(vinyl alcohol) hydrogel as an artificial articular cartilage: evaluation of biocompatibility.
    Noguchi T; Yamamuro T; Oka M; Kumar P; Kotoura Y; Hyon S; Ikada Y
    J Appl Biomater; 1991; 2(2):101-7. PubMed ID: 10171121
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage.
    Li F; Wang A; Wang C
    J Mater Sci Mater Med; 2016 May; 27(5):87. PubMed ID: 26970769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical properties of polyvinylalcohol/hydroxyapatite cryogel as potential artificial cartilage.
    Gonzalez JS; Alvarez VA
    J Mech Behav Biomed Mater; 2014 Jun; 34():47-56. PubMed ID: 24556324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance of novel bioactive hybrid hydrogels in vitro and in vivo used for artificial cartilage.
    Zheng Y; Lv H; Wang Y; Lu H; Qing L; Xi T
    Biomed Mater; 2009 Feb; 4(1):015015. PubMed ID: 19075366
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Development of artificial disc nucleus materials (semicrystalline polyvinyl alcohol hydrogel elastomers)].
    Gu Z; Ma Y; Gao J; Liu J; Li Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Jun; 21(3):347-9. PubMed ID: 15250130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite.
    Moreau D; Villain A; Ku DN; Corté L
    Biomatter; 2014; 4():e28764. PubMed ID: 25482413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus in vivo.
    Kobayashi M
    Biomed Mater Eng; 2004; 14(4):505-15. PubMed ID: 15472397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation, mechanical properties, fatigue and tribological behavior of double crosslinked high strength hydrogel.
    Li W; Qiao K; Zheng Y; Yan Y; Xie Y; Liu Y; Ren H
    J Mech Behav Biomed Mater; 2022 Feb; 126():105009. PubMed ID: 34861520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An evaluation of the biocompatibility properties of a salt-modified polyvinyl alcohol hydrogel for a knee meniscus application.
    Hayes JC; Kennedy JE
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():894-900. PubMed ID: 26652445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation and in vivo investigation of artificial cornea made of nano-hydroxyapatite/poly (vinyl alcohol) hydrogel composite.
    Fenglan X; Yubao L; Xiaoming Y; Hongbing L; Li Z
    J Mater Sci Mater Med; 2007 Apr; 18(4):635-40. PubMed ID: 17546425
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D printing of a poly(vinyl alcohol)-based nano-composite hydrogel as an artificial cartilage replacement and the improvement mechanism of printing accuracy.
    Meng Y; Cao J; Chen Y; Yu Y; Ye L
    J Mater Chem B; 2020 Jan; 8(4):677-690. PubMed ID: 31859324
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fracture toughness of steel-fiber-reinforced bone cement.
    Kotha SP; Li C; Schmid SR; Mason JJ
    J Biomed Mater Res A; 2004 Sep; 70(3):514-21. PubMed ID: 15293326
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PVA-Based Hydrogels: Promising Candidates for Articular Cartilage Repair.
    Chen Y; Song J; Wang S; Liu W
    Macromol Biosci; 2021 Oct; 21(10):e2100147. PubMed ID: 34272821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Porous poly(vinyl alcohol)-hydrogel matrix-engineered biosynthetic cartilage.
    Bichara DA; Zhao X; Bodugoz-Senturk H; Ballyns FP; Oral E; Randolph MA; Bonassar LJ; Gill TJ; Muratoglu OK
    Tissue Eng Part A; 2011 Feb; 17(3-4):301-9. PubMed ID: 20799889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical properties and in-vivo performance of calcium phosphate cement-chitosan fibre composite.
    Lian Q; Li DC; He JK; Wang Z
    Proc Inst Mech Eng H; 2008 Apr; 222(3):347-53. PubMed ID: 18491703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biodegradable-Glass-Fiber Reinforced Hydrogel Composite with Enhanced Mechanical Performance and Cell Proliferation for Potential Cartilage Repair.
    Zhu C; Huang C; Zhang W; Ding X; Yang Y
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Poly(vinyl alcohol)/collagen/hydroxyapatite hydrogel: properties and in vitro cellular response.
    Song W; Markel DC; Jin X; Shi T; Ren W
    J Biomed Mater Res A; 2012 Nov; 100(11):3071-9. PubMed ID: 22733675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.