BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 11451034)

  • 1. Effect of sucrose/raffinose mass ratios on the stability of co-lyophilized protein during storage above the Tg.
    Davidson P; Sun WQ
    Pharm Res; 2001 Apr; 18(4):474-9. PubMed ID: 11451034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colyophilized Sugar-Polymer Dispersions for Enhanced Processing and Storage Stability.
    Giannachi C; Allen E; Egan G; Vucen S; Crean A
    Mol Pharm; 2024 Jun; 21(6):3017-3026. PubMed ID: 38758116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the physical stability of freeze-dried sucrose-containing formulations by differential scanning calorimetry.
    te Booy MP; de Ruiter RA; de Meere AL
    Pharm Res; 1992 Jan; 9(1):109-14. PubMed ID: 1589394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freeze drying of L-arginine/sucrose-based protein formulations, part I: influence of formulation and arginine counter ion on the critical formulation temperature, product performance and protein stability.
    Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P
    J Pharm Sci; 2015 Jul; 104(7):2345-58. PubMed ID: 25994980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein stability in the amorphous carbohydrate matrix: relevance to anhydrobiosis.
    Sun WQ; Davidson P; Chan HS
    Biochim Biophys Acta; 1998 Sep; 1425(1):245-54. PubMed ID: 9813351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freeze-Drying of L-Arginine/Sucrose-Based Protein Formulations, Part 2: Optimization of Formulation Design and Freeze-Drying Process Conditions for an L-Arginine Chloride-Based Protein Formulation System.
    Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P
    J Pharm Sci; 2015 Dec; 104(12):4241-4256. PubMed ID: 26422647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of formulation and process variables on the aggregation of freeze-dried interleukin-6 (IL-6) after lyophilization and on storage.
    Lueckel B; Helk B; Bodmer D; Leuenberger H
    Pharm Dev Technol; 1998 Aug; 3(3):337-46. PubMed ID: 9742554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of the kinetics of protein unfolding in viscous systems and implications for protein stability in freeze-drying.
    Tang XC; Pikal MJ
    Pharm Res; 2005 Jul; 22(7):1176-85. PubMed ID: 16028019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A specific molar ratio of stabilizer to protein is required for storage stability of a lyophilized monoclonal antibody.
    Cleland JL; Lam X; Kendrick B; Yang J; Yang TH; Overcashier D; Brooks D; Hsu C; Carpenter JF
    J Pharm Sci; 2001 Mar; 90(3):310-21. PubMed ID: 11170024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein inactivation in amorphous sucrose and trehalose matrices: effects of phase separation and crystallization.
    Sun WQ; Davidson P
    Biochim Biophys Acta; 1998 Sep; 1425(1):235-44. PubMed ID: 9813347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of freeze-dried biosynthetic Factor VIII: I. A case study in the optimization of formulation.
    Jameel F; Tchessalov S; Bjornson E; Lu X; Besman M; Pikal M
    Pharm Dev Technol; 2009; 14(6):687-97. PubMed ID: 19883259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raffinose crystallization during freeze-drying and its impact on recovery of protein activity.
    Chatterjee K; Shalaev EY; Suryanarayanan R
    Pharm Res; 2005 Feb; 22(2):303-9. PubMed ID: 15783079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilizing effect of four types of disaccharide on the enzymatic activity of freeze-dried lactate dehydrogenase: step by step evaluation from freezing to storage.
    Kawai K; Suzuki T
    Pharm Res; 2007 Oct; 24(10):1883-90. PubMed ID: 17486434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the stabilisation of freeze-dried lysozyme and the physical properties of the formulations.
    Liao YH; Brown MB; Martin GP
    Eur J Pharm Biopharm; 2004 Jul; 58(1):15-24. PubMed ID: 15207533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of dextran molecular weight on protein stabilization during freeze-drying and storage.
    Sun WQ; Davidson P
    Cryo Letters; 2001; 22(5):285-92. PubMed ID: 11788870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of storage stability of lyophilized actin using combinations of disaccharides and dextran.
    Allison SD; Manning MC; Randolph TW; Middleton K; Davis A; Carpenter JF
    J Pharm Sci; 2000 Feb; 89(2):199-214. PubMed ID: 10688749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isomalt and its diastereomer mixtures as stabilizing excipients with freeze-dried lactate dehydrogenase.
    Tuderman AK; Strachan CJ; Juppo AM
    Int J Pharm; 2018 Mar; 538(1-2):287-295. PubMed ID: 29341910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of protein stabilization by sugars during freeze-drying and storage: native structure preservation, specific interaction, and/or immobilization in a glassy matrix?
    Chang L; Shepherd D; Sun J; Ouellette D; Grant KL; Tang XC; Pikal MJ
    J Pharm Sci; 2005 Jul; 94(7):1427-44. PubMed ID: 15920775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of the restriction enzyme EcoRI dried with trehalose and other selected glass-forming solutes.
    Rossi S; Buera MP; Moreno S; Chirife J
    Biotechnol Prog; 1997; 13(5):609-16. PubMed ID: 9336981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of sugar additives on protein stability of recombinant human serum albumin during lyophilization and storage.
    Han Y; Jin BS; Lee SB; Sohn Y; Joung JW; Lee JH
    Arch Pharm Res; 2007 Sep; 30(9):1124-31. PubMed ID: 17958330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.