These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11453065)

  • 1. A minihelix-loop RNA acts as a trans-aminoacylation catalyst.
    Lee N; Suga H
    RNA; 2001 Jul; 7(7):1043-51. PubMed ID: 11453065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minihelix-loop RNAs: minimal structures for aminoacylation catalysts.
    Ramaswamy K; Wei K; Suga H
    Nucleic Acids Res; 2002 May; 30(10):2162-71. PubMed ID: 12000836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribozyme-catalyzed tRNA aminoacylation.
    Lee N; Bessho Y; Wei K; Szostak JW; Suga H
    Nat Struct Biol; 2000 Jan; 7(1):28-33. PubMed ID: 10625423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Essential roles of innersphere metal ions for the formation of the glutamine binding site in a bifunctional ribozyme.
    Lee N; Suga H
    Biochemistry; 2001 Nov; 40(45):13633-43. PubMed ID: 11695912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identity elements for specific aminoacylation of a tRNA by mammalian lysyl-tRNA synthetase bearing a nonspecific tRNA-interacting factor.
    Francin M; Mirande M
    Biochemistry; 2006 Aug; 45(33):10153-60. PubMed ID: 16906773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly of a catalytic unit for RNA microhelix aminoacylation using nonspecific RNA binding domains.
    Chihade JW; Schimmel P
    Proc Natl Acad Sci U S A; 1999 Oct; 96(22):12316-21. PubMed ID: 10535919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexizymes: their evolutionary history and the origin of catalytic function.
    Morimoto J; Hayashi Y; Iwasaki K; Suga H
    Acc Chem Res; 2011 Dec; 44(12):1359-68. PubMed ID: 21711008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concurrent molecular recognition of the amino acid and tRNA by a ribozyme.
    Saito H; Watanabe K; Suga H
    RNA; 2001 Dec; 7(12):1867-78. PubMed ID: 11780641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of essential domains for Escherichia coli tRNA(leu) aminoacylation and amino acid editing using minimalist RNA molecules.
    Larkin DC; Williams AM; Martinis SA; Fox GE
    Nucleic Acids Res; 2002 May; 30(10):2103-13. PubMed ID: 12000830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient aminoacylation of tRNA(Lys,3) by human lysyl-tRNA synthetase is dependent on covalent continuity between the acceptor stem and the anticodon domain.
    Stello T; Hong M; Musier-Forsyth K
    Nucleic Acids Res; 1999 Dec; 27(24):4823-9. PubMed ID: 10572184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An aminoacylation ribozyme evolved from a natural tRNA-sensing T-box riboswitch.
    Ishida S; Terasaka N; Katoh T; Suga H
    Nat Chem Biol; 2020 Jun; 16(6):702-709. PubMed ID: 32203413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vitro evolved precursor tRNA with aminoacylation activity.
    Saito H; Kourouklis D; Suga H
    EMBO J; 2001 Apr; 20(7):1797-806. PubMed ID: 11285242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Operational RNA code for amino acids: species-specific aminoacylation of minihelices switched by a single nucleotide.
    Hipps D; Shiba K; Henderson B; Schimmel P
    Proc Natl Acad Sci U S A; 1995 Jun; 92(12):5550-2. PubMed ID: 7539919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific tyrosylation of the bulky tRNA-like structure of brome mosaic virus RNA relies solely on identity nucleotides present in its amino acid-accepting domain.
    Fechter P; Giegé R; Rudinger-Thirion J
    J Mol Biol; 2001 Jun; 309(2):387-99. PubMed ID: 11371160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. E. coli glutamyl-tRNA synthetase is inhibited by anticodon stem-loop domains and a minihelix.
    Gustilo EM; Dubois DY; Lapointe J; Agris PF
    RNA Biol; 2007 Jul; 4(2):85-92. PubMed ID: 17671438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA scaffolds for minihelix-based aminoacyl transfer: design of "transpeptizymes".
    Sardesai NY; Stagg SM; Vanloock MS; Harvey SC; Schimmel P
    J Biomol Struct Dyn; 2000; 17 Suppl 1():29-37. PubMed ID: 22607404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of specific tRNA aminoacylation by a small in vitro selected ribozyme.
    Xiao H; Murakami H; Suga H; Ferré-D'Amaré AR
    Nature; 2008 Jul; 454(7202):358-61. PubMed ID: 18548004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A recurrent general RNA binding domain appended to plant methionyl-tRNA synthetase acts as a cis-acting cofactor for aminoacylation.
    Kaminska M; Deniziak M; Kerjan P; Barciszewski J; Mirande M
    EMBO J; 2000 Dec; 19(24):6908-17. PubMed ID: 11118226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative design of a tRNA core for aminoacylation.
    Christian T; Lipman RS; Evilia C; Hou YM
    J Mol Biol; 2000 Nov; 303(4):503-14. PubMed ID: 11054287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prevention of mis-aminoacylation of a dual-specificity aminoacyl-tRNA synthetase.
    Lipman RS; Wang J; Sowers KR; Hou YM
    J Mol Biol; 2002 Feb; 315(5):943-9. PubMed ID: 11827467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.