These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11453065)

  • 21. Aminoacylation of RNA minihelices: implications for tRNA synthetase structural design and evolution.
    Buechter DD; Schimmel P
    Crit Rev Biochem Mol Biol; 1993; 28(4):309-22. PubMed ID: 7691478
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for a conserved relationship between an acceptor stem and a tRNA for aminoacylation.
    Hou YM; Sterner T; Bhalla R
    RNA; 1995 Sep; 1(7):707-13. PubMed ID: 7585255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-enzymatic aminoacylation of an RNA minihelix with an aminoacyl phosphate oligonucleotide.
    Tamura K; Schimmel P
    Nucleic Acids Symp Ser (Oxf); 2004; (48):269-70. PubMed ID: 17150582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aminoacylation of RNA minihelices with alanine.
    Francklyn C; Schimmel P
    Nature; 1989 Feb; 337(6206):478-81. PubMed ID: 2915692
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recognition of human mitochondrial tRNALeu(UUR) by its cognate leucyl-tRNA synthetase.
    Sohm B; Sissler M; Park H; King MP; Florentz C
    J Mol Biol; 2004 May; 339(1):17-29. PubMed ID: 15123417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The presence of a D-stem but not a T-stem is essential for triggering aminoacylation upon anticodon binding in yeast methionine tRNA.
    Senger B; Aphasizhev R; Walter P; Fasiolo F
    J Mol Biol; 1995 May; 249(1):45-58. PubMed ID: 7776375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Essential structures of a self-aminoacylating RNA.
    Illangasekare M; Kovalchuke O; Yarus M
    J Mol Biol; 1997 Dec; 274(4):519-29. PubMed ID: 9417932
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Outersphere and innersphere coordinated metal ions in an aminoacyl-tRNA synthetase ribozyme.
    Saito H; Suga H
    Nucleic Acids Res; 2002 Dec; 30(23):5151-9. PubMed ID: 12466539
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Domain-domain communication for tRNA aminoacylation: the importance of covalent connectivity.
    Zhang CM; Hou YM
    Biochemistry; 2005 May; 44(19):7240-9. PubMed ID: 15882062
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Importance of the conserved nucleotides around the tRNA-like structure of Escherichia coli transfer-messenger RNA for protein tagging.
    Hanawa-Suetsugu K; Bordeau V; Himeno H; Muto A; Felden B
    Nucleic Acids Res; 2001 Nov; 29(22):4663-73. PubMed ID: 11713316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contributions of discrete tRNA(Ser) domains to aminoacylation by E.coli seryl-tRNA synthetase: a kinetic analysis using model RNA substrates.
    Sampson JR; Saks ME
    Nucleic Acids Res; 1993 Sep; 21(19):4467-75. PubMed ID: 8233780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction of structural modules in substrate binding by the ribozyme from Bacillus subtilis RNase P.
    Odell L; Huang V; Jakacka M; Pan T
    Nucleic Acids Res; 1998 Aug; 26(16):3717-23. PubMed ID: 9685487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new type of hairpin ribozyme consisting of three domains.
    Komatsu Y; Kanzaki I; Shirai M; Ohtsuka E
    Biochemistry; 1997 Aug; 36(32):9935-40. PubMed ID: 9245427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aminoacylation of an unusual tRNA(Cys) from an extreme halophile.
    Evilia C; Ming X; DasSarma S; Hou YM
    RNA; 2003 Jul; 9(7):794-801. PubMed ID: 12810913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular basis for chiral selection in RNA aminoacylation.
    Tamura K
    Int J Mol Sci; 2011; 12(7):4745-57. PubMed ID: 21845109
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An important 2'-OH group for an RNA-protein interaction.
    Hou YM; Zhang X; Holland JA; Davis DR
    Nucleic Acids Res; 2001 Feb; 29(4):976-85. PubMed ID: 11160931
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transfer RNA aminoacylation: identification of a critical ribose 2'-hydroxyl-base interaction.
    Yap LP; Musier-Forsyth K
    RNA; 1995 Jun; 1(4):418-24. PubMed ID: 7493319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNA recognition by designed peptide fusion creates "artificial" tRNA synthetase.
    Frugier M; Giege R; Schimmel P
    Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7471-5. PubMed ID: 12796515
    [TBL] [Abstract][Full Text] [Related]  

  • 40. tRNA evolution from the proto-tRNA minihelix world.
    Root-Bernstein R; Kim Y; Sanjay A; Burton ZF
    Transcription; 2016 Oct; 7(5):153-163. PubMed ID: 27636862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.