BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 11453739)

  • 1. Resolving pathways of interaction of covalent inhibitors with the active site of acetylcholinesterases: MALDI-TOF/MS analysis of various nerve agent phosphyl adducts.
    Elhanany E; Ordentlich A; Dgany O; Kaplan D; Segall Y; Barak R; Velan B; Shafferman A
    Chem Res Toxicol; 2001 Jul; 14(7):912-8. PubMed ID: 11453739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for P-N bond scission in phosphoroamidate nerve agent adducts of human acetylcholinesterase.
    Barak D; Ordentlich A; Kaplan D; Barak R; Mizrahi D; Kronman C; Segall Y; Velan B; Shafferman A
    Biochemistry; 2000 Feb; 39(5):1156-61. PubMed ID: 10653663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct analysis of the kinetic profiles of organophosphate-acetylcholinesterase adducts by MALDI-TOF mass spectrometry.
    Jennings LL; Malecki M; Komives EA; Taylor P
    Biochemistry; 2003 Sep; 42(37):11083-91. PubMed ID: 12974645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolving pathways of interaction of mipafox and a sarin analog with human acetylcholinesterase by kinetics, mass spectrometry and molecular modeling approaches.
    Mangas I; Taylor P; Vilanova E; Estévez J; França TC; Komives E; Radić Z
    Arch Toxicol; 2016 Mar; 90(3):603-16. PubMed ID: 25743373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aging pathways for organophosphate-inhibited human butyrylcholinesterase, including novel pathways for isomalathion, resolved by mass spectrometry.
    Li H; Schopfer LM; Nachon F; Froment MT; Masson P; Lockridge O
    Toxicol Sci; 2007 Nov; 100(1):136-45. PubMed ID: 17698511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic-site conformational equilibrium in nerve-agent adducts of acetylcholinesterase: possible implications for the HI-6 antidote substrate specificity.
    Artursson E; Andersson PO; Akfur C; Linusson A; Börjegren S; Ekström F
    Biochem Pharmacol; 2013 May; 85(9):1389-97. PubMed ID: 23376121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxime-assisted reactivation of tabun-inhibited acetylcholinesterase analysed by active site mutations.
    Katalinić M; Šinko G; Maček Hrvat N; Zorbaz T; Bosak A; Kovarik Z
    Toxicology; 2018 Aug; 406-407():104-113. PubMed ID: 29772260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for detection and identification of albumin phosphylation by organophosphorus pesticides and G- and V-type nerve agents.
    John H; Breyer F; Thumfart JO; Höchstetter H; Thiermann H
    Anal Bioanal Chem; 2010 Nov; 398(6):2677-91. PubMed ID: 20730528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of acetylcholinesterase by (1S,3S)-isomalathion proceeds with loss of thiomethyl: kinetic and mass spectral evidence for an unexpected primary leaving group.
    Doorn JA; Gage DA; Schall M; Talley TT; Thompson CM; Richardson RJ
    Chem Res Toxicol; 2000 Dec; 13(12):1313-20. PubMed ID: 11123973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methamidophos, dichlorvos, O-methoate and diazinon pesticides used in Turkey make a covalent bond with butyrylcholinesterase detected by mass spectrometry.
    Tacal O; Lockridge O
    J Appl Toxicol; 2010 Jul; 30(5):469-75. PubMed ID: 20229498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nerve agent analogues that produce authentic soman, sarin, tabun, and cyclohexyl methylphosphonate-modified human butyrylcholinesterase.
    Gilley C; MacDonald M; Nachon F; Schopfer LM; Zhang J; Cashman JR; Lockridge O
    Chem Res Toxicol; 2009 Oct; 22(10):1680-8. PubMed ID: 19715348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallographic snapshots of nonaged and aged conjugates of soman with acetylcholinesterase, and of a ternary complex of the aged conjugate with pralidoxime.
    Sanson B; Nachon F; Colletier JP; Froment MT; Toker L; Greenblatt HM; Sussman JL; Ashani Y; Masson P; Silman I; Weik M
    J Med Chem; 2009 Dec; 52(23):7593-603. PubMed ID: 19642642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resurrection Biology: Aged Acetylcholinesterase Brought Back to Life.
    Quinn DM
    J Med Chem; 2018 Aug; 61(16):7032-7033. PubMed ID: 30110162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutant acetylcholinesterases as potential detoxification agents for organophosphate poisoning.
    Saxena A; Maxwell DM; Quinn DM; Radić Z; Taylor P; Doctor BP
    Biochem Pharmacol; 1997 Jul; 54(2):269-74. PubMed ID: 9271331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the physicochemical properties of oxime-reactivation therapeutics for cyclosarin, sarin, tabun, and VX inactivated acetylcholinesterase.
    Esposito EX; Stouch TR; Wymore T; Madura JD
    Chem Res Toxicol; 2014 Jan; 27(1):99-110. PubMed ID: 24443939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aging of mipafox-inhibited human acetylcholinesterase proceeds by displacement of both isopropylamine groups to yield a phosphate adduct.
    Kropp TJ; Richardson RJ
    Chem Res Toxicol; 2006 Feb; 19(2):334-9. PubMed ID: 16485911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanic study of nerve agent O-ethyl S-[2-(diisopropylamino)ethyl]methylphosphonothioate (VX) bound to the active site of Torpedo californica acetylcholinesterase.
    Albaret C; Lacoutière S; Ashman WP; Froment D; Fortier PL
    Proteins; 1997 Aug; 28(4):543-55. PubMed ID: 9261870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivation steps by 2-PAM of tabun-inhibited human acetylcholinesterase: reducing the computational cost in hybrid QM/MM methods.
    da Silva Gonçalves A; França TC; Caetano MS; Ramalho TC
    J Biomol Struct Dyn; 2014; 32(2):301-7. PubMed ID: 23527625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Key active site residues in the inhibition of acetylcholinesterases by soman.
    Qian N; Kovach IM
    FEBS Lett; 1993 Dec; 336(2):263-6. PubMed ID: 8262242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of a dynamic in vitro model with real-time determination of acetylcholinesterase activity for the investigation of tabun analogues and oximes.
    Worek F; Herkert NM; Koller M; Thiermann H; Wille T
    Toxicol In Vitro; 2015 Dec; 30(1 Pt B):514-20. PubMed ID: 26368669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.