BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 11453753)

  • 1. Effect of several germination conditions on total P, phytate P, phytase, and acid phosphatase activities and inositol phosphate esters in rye and barley.
    Centeno C; Viveros A; Brenes A; Canales R; Lozano A; de la Cuadra C
    J Agric Food Chem; 2001 Jul; 49(7):3208-15. PubMed ID: 11453753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of several germination treatments on phosphatases activities and degradation of phytate in faba bean (Vicia faba L.) and azuki bean (Vigna angularis L.).
    Luo Y; Xie W; Luo F
    J Food Sci; 2012 Oct; 77(10):C1023-9. PubMed ID: 22938099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytase and acid phosphatase activities in plant feedstuffs.
    Viveros A; Centeno C; Brenes A; Canales R; Lozano A
    J Agric Food Chem; 2000 Sep; 48(9):4009-13. PubMed ID: 10995305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial phytase addition resulted in a greater increase in phosphorus digestibility in dry-fed compared with liquid-fed non-heat-treated wheat-barley-maize diets for pigs.
    Blaabjerg K; Thomassen AM; Poulsen HD
    Animal; 2015 Feb; 9(2):243-8. PubMed ID: 25245085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of germination temperature on characteristics of phytase production from barley.
    Sung HG; Shin HT; Ha JK; Lai HL; Cheng KJ; Lee JH
    Bioresour Technol; 2005 Jul; 96(11):1297-303. PubMed ID: 15734318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the activity of acidic phytate-degrading enzymes in cereal seeds.
    Greiner R; Egli I
    J Agric Food Chem; 2003 Feb; 51(4):847-50. PubMed ID: 12568536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Phytic acid and cereals and cereal products. I: Phytic acid and phytase in rye and rye products].
    Fretzdorff B; Weipert D
    Z Lebensm Unters Forsch; 1986 Apr; 182(4):287-93. PubMed ID: 3012903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) multiple inositol polyphosphate phosphatases (MINPPs) are phytases expressed during grain filling and germination.
    Dionisio G; Holm PB; Brinch-Pedersen H
    Plant Biotechnol J; 2007 Mar; 5(2):325-38. PubMed ID: 17309687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative conversion of phytate to inorganic phosphorus in soybean seeds expressing a bacterial phytase.
    Bilyeu KD; Zeng P; Coello P; Zhang ZJ; Krishnan HB; Bailey A; Beuselinck PR; Polacco JC
    Plant Physiol; 2008 Feb; 146(2):468-77. PubMed ID: 18162589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of low-phytate barley or phytase supplementation to a barley-soybean meal diet on phosphorus retention and excretion by grower pigs.
    Htoo JK; Sauer WC; Yáñez JL; Cervantes M; Zhang Y; Helm JH; Zijlstra RT
    J Anim Sci; 2007 Nov; 85(11):2941-8. PubMed ID: 17591717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds.
    Hong CY; Cheng KJ; Tseng TH; Wang CS; Liu LF; Yu SM
    Transgenic Res; 2004 Feb; 13(1):29-39. PubMed ID: 15070073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity of Escherichia coli, Aspergillus niger, and Rye Phytase toward Partially Phosphorylated myo-Inositol Phosphates.
    Greiner R
    J Agric Food Chem; 2017 Nov; 65(44):9603-9607. PubMed ID: 29052415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of phytase activity in cereal grains by direct incubation.
    Zimmermann B; Lantzsch HJ; Langbein U; Drochner W
    J Anim Physiol Anim Nutr (Berl); 2002 Oct; 86(9-10):347-52. PubMed ID: 12452977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Barley HvPAPhy_a as transgene provides high and stable phytase activities in mature barley straw and in grains.
    Holme IB; Dionisio G; Madsen CK; Brinch-Pedersen H
    Plant Biotechnol J; 2017 Apr; 15(4):415-422. PubMed ID: 27633382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of phosphorus utilization in growing pigs fed phytate-rich diets by using rye bran.
    Pointillart A
    J Anim Sci; 1991 Mar; 69(3):1109-15. PubMed ID: 1648062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutritional significance of phytic acid and phytase.
    Pallauf J; Rimbach G
    Arch Tierernahr; 1997; 50(4):301-19. PubMed ID: 9345595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological Characteristics, Phytase Activity, and Mineral Bioavailability of a Low-Phytate Soybean Line during Germination.
    Dong Q; Saneoka H
    Plant Foods Hum Nutr; 2020 Sep; 75(3):383-389. PubMed ID: 32440755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of extracellular inositol hexaphosphate (phytate) by Saccharomyces cerevisiae.
    Andlid TA; Veide J; Sandberg AS
    Int J Food Microbiol; 2004 Dec; 97(2):157-69. PubMed ID: 15541802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of germination on the phytase activity, phytate and total phosphorus contents of some Nigerian-grown grain legumes.
    Azeke MA; Elsanhoty RM; Egielewa SJ; Eigbogbo MU
    J Sci Food Agric; 2011 Jan; 91(1):75-9. PubMed ID: 20859988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of food processing on phytate hydrolysis and availability of iron and zinc.
    Sandberg AS
    Adv Exp Med Biol; 1991; 289():499-508. PubMed ID: 1654732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.