These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 11453753)
21. Bioavailability of iron, zinc, phytate and phytase activity during soaking and germination of white sorghum varieties. Afify Ael-M; El-Beltagi HS; El-Salam SM; Omran AA PLoS One; 2011; 6(10):e25512. PubMed ID: 22003395 [TBL] [Abstract][Full Text] [Related]
22. The presence of inositol phosphates in gastric pig digesta is affected by time after feeding a nonfermented or fermented liquid wheat- and barley-based diet. Blaabjerg K; Jørgensen H; Tauson AH; Poulsen HD J Anim Sci; 2011 Oct; 89(10):3153-62. PubMed ID: 21551342 [TBL] [Abstract][Full Text] [Related]
23. Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorus contents. I. Effects on bird performance and toe ash. Cabahug S; Ravindran V; Selle PH; Bryden WL Br Poult Sci; 1999 Dec; 40(5):660-6. PubMed ID: 10670679 [TBL] [Abstract][Full Text] [Related]
24. Differences in phytase activity and phytic acid content between cultivated and Tibetan annual wild barleys. Dai F; Qiu L; Xu Y; Cai S; Qiu B; Zhang G J Agric Food Chem; 2010 Nov; 58(22):11821-4. PubMed ID: 21047062 [TBL] [Abstract][Full Text] [Related]
25. Hydrolysis of phytate and its inositol phosphate intermediates by an acid and an alkaline phosphatase. Kaufman HW; Kleinberg I Arch Oral Biol; 1975 Mar; 20(3):157-60. PubMed ID: 235912 [No Abstract] [Full Text] [Related]
26. Profile and bioavailability analysis of myo-inositol phosphates in rye bread supplemented with phytases: a study using an in vitro method and Caco-2 monolayers. Duliński R; Cielecka EK; Pierzchalska M; Byczyński Ł; Żyła K Int J Food Sci Nutr; 2016 Jun; 67(4):454-60. PubMed ID: 27019314 [TBL] [Abstract][Full Text] [Related]
27. Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Dorsch JA; Cook A; Young KA; Anderson JM; Bauman AT; Volkmann CJ; Murthy PP; Raboy V Phytochemistry; 2003 Mar; 62(5):691-706. PubMed ID: 12620321 [TBL] [Abstract][Full Text] [Related]
28. Processing of quinoa (Chenopodium quinoa, Willd): effects on in vitro iron availability and phytate hydrolysis. Valencia S; Svanberg U; Sandberg AS; Ruales J Int J Food Sci Nutr; 1999 May; 50(3):203-11. PubMed ID: 10627836 [TBL] [Abstract][Full Text] [Related]
29. Inositol phosphates from barley low-phytate grain mutants analysed by metal-dye detection HPLC and NMR. Hatzack F; Hübel F; Zhang W; Hansen PE; Rasmussen SK Biochem J; 2001 Mar; 354(Pt 2):473-80. PubMed ID: 11171128 [TBL] [Abstract][Full Text] [Related]
30. Phytate: impact on environment and human nutrition. A challenge for molecular breeding. Bohn L; Meyer AS; Rasmussen SK J Zhejiang Univ Sci B; 2008 Mar; 9(3):165-91. PubMed ID: 18357620 [TBL] [Abstract][Full Text] [Related]
31. The degradation of phytate by microbial and wheat phytases is dependent on the phytate matrix and the phytase origin. Brejnholt SM; Dionisio G; Glitsoe V; Skov LK; Brinch-Pedersen H J Sci Food Agric; 2011 Jun; 91(8):1398-405. PubMed ID: 21387323 [TBL] [Abstract][Full Text] [Related]
32. Adaptive increase in phytate digestibility by phosphorus-deprived rats and the relationship of intestinal phytase (EC 3.1.3.8) and alkaline phosphatase (EC 3.1.3.1) to phytate utilization. Moore RJ; Veum TL Br J Nutr; 1983 Jan; 49(1):145-52. PubMed ID: 6295437 [TBL] [Abstract][Full Text] [Related]
33. Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice. Dionisio G; Madsen CK; Holm PB; Welinder KG; Jørgensen M; Stoger E; Arcalis E; Brinch-Pedersen H Plant Physiol; 2011 Jul; 156(3):1087-100. PubMed ID: 21220762 [TBL] [Abstract][Full Text] [Related]
34. Effect of grain source and exogenous phytase on phosphorus digestibility in dairy cows. Kincaid RL; Garikipati DK; Nennich TD; Harrison JH J Dairy Sci; 2005 Aug; 88(8):2893-902. PubMed ID: 16027204 [TBL] [Abstract][Full Text] [Related]
35. High mature grain phytase activity in the Triticeae has evolved by duplication followed by neofunctionalization of the purple acid phosphatase phytase (PAPhy) gene. Madsen CK; Dionisio G; Holme IB; Holm PB; Brinch-Pedersen H J Exp Bot; 2013 Aug; 64(11):3111-23. PubMed ID: 23918958 [TBL] [Abstract][Full Text] [Related]
36. The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation. Reale A; Konietzny U; Coppola R; Sorrentino E; Greiner R J Agric Food Chem; 2007 Apr; 55(8):2993-7. PubMed ID: 17373819 [TBL] [Abstract][Full Text] [Related]
37. Effects of an experimental phytase on performance, egg quality, tibia ash content and phosphorus bioavailability in laying hens fed on maize- or barley-based diets. Francesch M; Broz J; Brufau J Br Poult Sci; 2005 Jun; 46(3):340-8. PubMed ID: 16050188 [TBL] [Abstract][Full Text] [Related]
38. Improved hydrolase activity in barley and reduced malting time by adding phytase as an activator during malting steeping. Qiu R; Lu J Biotechnol Lett; 2017 Dec; 39(12):1889-1894. PubMed ID: 29027600 [TBL] [Abstract][Full Text] [Related]
39. Structure of a cereal purple acid phytase provides new insights to phytate degradation in plants. Faba-Rodriguez R; Gu Y; Salmon M; Dionisio G; Brinch-Pedersen H; Brearley CA; Hemmings AM Plant Commun; 2022 Mar; 3(2):100305. PubMed ID: 35529950 [TBL] [Abstract][Full Text] [Related]
40. Phytate degradation in a mixture of ground wheat and ground defatted soybeans during feed processing: effects of temperature, moisture level, and retention time in small- and medium-scale incubation systems. Denstadli V; Vestre R; Svihus B; Skrede A; Storebakken T J Agric Food Chem; 2006 Aug; 54(16):5887-93. PubMed ID: 16881691 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]