These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 11454172)

  • 1. Structures of the transmembrane helices of the G-protein coupled receptor, rhodopsin.
    Katragadda M; Chopra A; Bennett M; Alderfer JL; Yeagle PL; Albert AD
    J Pept Res; 2001 Jul; 58(1):79-89. PubMed ID: 11454172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three dimensional structure of the seventh transmembrane helical domain of the G-protein receptor, rhodopsin.
    Yeagle PL; Danis C; Choi G; Alderfer JL; Albert AD
    Mol Vis; 2000 Jul; 6():125-31. PubMed ID: 10930473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structure of the sixth transmembrane helix of the G-protein-coupled receptor, rhodopsin.
    Chopra A; Yeagle PL; Alderfer JA; Albert AD
    Biochim Biophys Acta; 2000 Jan; 1463(1):1-5. PubMed ID: 10631288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure determination of the fourth cytoplasmic loop and carboxyl terminal domain of bovine rhodopsin.
    Yeagle PL; Alderfer JL; Albert AD
    Mol Vis; 1996 Dec; 2():12. PubMed ID: 9238089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The first and second cytoplasmic loops of the G-protein receptor, rhodopsin, independently form beta-turns.
    Yeagle PL; Alderfer JL; Salloum AC; Ali L; Albert AD
    Biochemistry; 1997 Apr; 36(13):3864-9. PubMed ID: 9092816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of the intradiskal loops and amino terminus of the G-protein receptor, rhodopsin.
    Yeagle PL; Salloum A; Chopra A; Bhawsar N; Ali L; Kuzmanovski G; Alderfer JL; Albert AD
    J Pept Res; 2000 Jun; 55(6):455-65. PubMed ID: 10888202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that helix 8 of rhodopsin acts as a membrane-dependent conformational switch.
    Krishna AG; Menon ST; Terry TJ; Sakmar TP
    Biochemistry; 2002 Jul; 41(26):8298-309. PubMed ID: 12081478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-activated rhodopsin induces structural binding motif in G protein alpha subunit.
    Kisselev OG; Kao J; Ponder JW; Fann YC; Gautam N; Marshall GR
    Proc Natl Acad Sci U S A; 1998 Apr; 95(8):4270-5. PubMed ID: 9539726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the third cytoplasmic loop of bovine rhodopsin.
    Yeagle PL; Alderfer JL; Albert AD
    Biochemistry; 1995 Nov; 34(45):14621-5. PubMed ID: 7578070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding propensities of peptide fragments of myoglobin.
    Reymond MT; Merutka G; Dyson HJ; Wright PE
    Protein Sci; 1997 Mar; 6(3):706-16. PubMed ID: 9070453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Certain activating mutations within helix 6 of the human luteinizing hormone receptor may be explained by alterations that allow transmembrane regions to activate Gs.
    Abell AN; McCormick DJ; Segaloff DL
    Mol Endocrinol; 1998 Dec; 12(12):1857-69. PubMed ID: 9849960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BUNDLE: a program for building the transmembrane domains of G-protein-coupled receptors.
    Filizola M; Perez JJ; Cartenì-Farina M
    J Comput Aided Mol Des; 1998 Mar; 12(2):111-8. PubMed ID: 9690171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors.
    Baldwin JM; Schertler GF; Unger VM
    J Mol Biol; 1997 Sep; 272(1):144-64. PubMed ID: 9299344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of rhodopsin and the superfamily of seven-helical receptors: the same and not the same.
    Sakmar TP
    Curr Opin Cell Biol; 2002 Apr; 14(2):189-95. PubMed ID: 11891118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. I. Myohemerythrin.
    Dyson HJ; Merutka G; Waltho JP; Lerner RA; Wright PE
    J Mol Biol; 1992 Aug; 226(3):795-817. PubMed ID: 1507227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural features and light-dependent changes in the sequence 306-322 extending from helix VII to the palmitoylation sites in rhodopsin: a site-directed spin-labeling study.
    Altenbach C; Cai K; Khorana HG; Hubbell WL
    Biochemistry; 1999 Jun; 38(25):7931-7. PubMed ID: 10387035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and docking the endothelin G-protein-coupled receptor.
    Orry AJ; Wallace BA
    Biophys J; 2000 Dec; 79(6):3083-94. PubMed ID: 11106614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein.
    Aggeli A; Bannister ML; Bell M; Boden N; Findlay JB; Hunter M; Knowles PF; Yang JC
    Biochemistry; 1998 Jun; 37(22):8121-31. PubMed ID: 9609707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intramolecular interactions that induce helical rearrangement upon rhodopsin activation: light-induced structural changes in metarhodopsin IIa probed by cysteine S-H stretching vibrations.
    Yamazaki Y; Nagata T; Terakita A; Kandori H; Shichida Y; Imamoto Y
    J Biol Chem; 2014 May; 289(20):13792-800. PubMed ID: 24692562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural features and light-dependent changes in the sequence 59-75 connecting helices I and II in rhodopsin: a site-directed spin-labeling study.
    Altenbach C; Klein-Seetharaman J; Hwa J; Khorana HG; Hubbell WL
    Biochemistry; 1999 Jun; 38(25):7945-9. PubMed ID: 10387037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.