These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 11454286)

  • 21. The role of the leading edge vortex in lift augmentation of steadily revolving wings: a change in perspective.
    Nabawy MRA; Crowther WJ
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28747395
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High aerodynamic lift from the tail reduces drag in gliding raptors.
    Usherwood JR; Cheney JA; Song J; Windsor SP; Stevenson JPJ; Dierksheide U; Nila A; Bomphrey RJ
    J Exp Biol; 2020 Feb; 223(Pt 3):. PubMed ID: 32041775
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hovering flight in the honeybee Apis mellifera: kinematic mechanisms for varying aerodynamic forces.
    Vance JT; Altshuler DL; Dickson WB; Dickinson MH; Roberts SP
    Physiol Biochem Zool; 2014; 87(6):870-81. PubMed ID: 25461650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.
    Johnston J; Gopalarathnam A
    Bioinspir Biomim; 2012 Sep; 7(3):036003. PubMed ID: 22498691
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.
    Phillips N; Knowles K; Bomphrey RJ
    Bioinspir Biomim; 2015 Oct; 10(5):056020. PubMed ID: 26451802
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The function of the alula on engineered wings: a detailed experimental investigation of a bioinspired leading-edge device.
    Ito MR; Duan C; Wissa AA
    Bioinspir Biomim; 2019 Aug; 14(5):056015. PubMed ID: 31357180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bat flight: aerodynamics, kinematics and flight morphology.
    Hedenström A; Johansson LC
    J Exp Biol; 2015 Mar; 218(Pt 5):653-63. PubMed ID: 25740899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect.
    Van Truong T; Byun D; Kim MJ; Yoon KJ; Park HC
    Bioinspir Biomim; 2013 Sep; 8(3):036007. PubMed ID: 23851351
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimating power curves of flying vertebrates.
    Rayner JM
    J Exp Biol; 1999 Dec; 202(Pt 23):3449-61. PubMed ID: 10562528
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wake structure and wingbeat kinematics of a house-martin Delichon urbica.
    Rosén M; Spedding GR; Hedenström A
    J R Soc Interface; 2007 Aug; 4(15):659-68. PubMed ID: 17264054
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aerodynamic trick for visual stabilization during downstroke in a hovering bird.
    Su JY; Ting SC; Chang YH; Yang JT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):012901. PubMed ID: 21867240
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Leading-edge vortex improves lift in slow-flying bats.
    Muijres FT; Johansson LC; Barfield R; Wolf M; Spedding GR; Hedenström A
    Science; 2008 Feb; 319(5867):1250-3. PubMed ID: 18309085
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinematics and aerodynamics of avian upstrokes during slow flight.
    Crandell KE; Tobalske BW
    J Exp Biol; 2015 Aug; 218(Pt 16):2518-27. PubMed ID: 26089528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aerodynamic performance of the feathered dinosaur Microraptor and the evolution of feathered flight.
    Dyke G; de Kat R; Palmer C; van der Kindere J; Naish D; Ganapathisubramani B
    Nat Commun; 2013; 4():2489. PubMed ID: 24048346
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of body size on the wing movements of pteropodid bats, with insights into thrust and lift production.
    Riskin DK; Iriarte-Díaz J; Middleton KM; Breuer KS; Swartz SM
    J Exp Biol; 2010 Dec; 213(Pt 23):4110-22. PubMed ID: 21075953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flow structure modifications by leading-edge tubercles on a 3D wing.
    Kim H; Kim J; Choi H
    Bioinspir Biomim; 2018 Oct; 13(6):066011. PubMed ID: 30362460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On aerodynamic modelling of an insect-like flapping wing in hover for micro air vehicles.
    Zbikowski R
    Philos Trans A Math Phys Eng Sci; 2002 Feb; 360(1791):273-90. PubMed ID: 16210181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A potential role for bat tail membranes in flight control.
    Gardiner JD; Dimitriadis G; Codd JR; Nudds RL
    PLoS One; 2011 Mar; 6(3):e18214. PubMed ID: 21479137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Daily energy expenditure of male barn swallows correlates with tail-streamer length: handicap-mediated foraging strategies.
    Nudds RL; Spencer KA
    Proc Biol Sci; 2004 May; 271 Suppl 4(Suppl 4):S160-3. PubMed ID: 15252971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Near- and far-field aerodynamics in insect hovering flight: an integrated computational study.
    Aono H; Liang F; Liu H
    J Exp Biol; 2008 Jan; 211(Pt 2):239-57. PubMed ID: 18165252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.